
ECS 3.8.x Data Access Guide

April 2024
Rev. 1.2

Chapter 1: S3...7
Revision history.. 7
Amazon S3 API support in ECS..7
S3 API supported and unsupported features... 8

Behavior where bucket already exists... 11
Bucket policy support.. 11

Creating, Assigning, and Managing Bucket Policies.. 12
Bucket policy scenarios.. 13
Supported bucket policy operations.. 14
Supported bucket policy conditions.. 15

Object Tagging... 16
Additional information about Object Tagging.. 17
Object Tagging operations... 17
Manage Object Tagging..18

S3 Object Lock... 19
Managing Object Lock.. 19

Object lifecycle management... 22
S3 Extensions...29

Byte range extensions..29
Retention... 32
File system enabled...34
S3A support.. 37
Geo-replication status.. 37
Configuring throttle limit during bucket creation...37
S3 Select... 38

Metadata Search... 38
Assign metadata index values to a bucket.. 39
Using encryption with metadata search... 41
Assign metadata to objects using the S3 protocol.. 41
Use metadata search queries... 42
Using Metadata Search from the ECS Java SDK ...47
ECS system metadata and optional attributes...47
Metadata search with Tokenization..48

S3 and Swift Interoperability.. 48
Create and manage secret keys.. 49

Create a key for an object user... 50
Create an S3 secret key: self-service.. 50

Authenticating with the S3 service.. 53
Authenticating using Signature V2..53
Authenticating using Signature V4..53

Using s3curl with ECS..54
Use SDKs to access the S3 service..54

Using the Java Amazon SDK.. 54
ECS Java SDK..59

ECS S3 error codes... 61

Contents

2 Contents

Hadoop S3A for ECS.. 67
Enabling data2 IP in ECS S3...69

Chapter 2: Cloud DVR..70
Cloud DVR overview...70
Cloud DVR supported APIs... 70

Cloud DVR API Examples..71

Chapter 3: ECS IAM for S3.. 78
ECS IAM overview.. 78
ECS IAM identities.. 78

Tagging ECS IAM users and roles... 79
Backward compatibility.. 79

ECS legacy users... 79
Access control..79

ECS IAM API and SDK access... 80
AWS SDK APIs not supported in ECS IAM... 92
ECS IAM error codes..93
ECS IAM supported condition keys.. 94
ECS IAM limitations on entities and objects...96
ECS IAM access management... 98

ECS IAM Policies... 98
ACLs... 99
S3 Request authorization.. 99
ECS IAM and STS resources requests... 102

Secure Token Service...102
Accessing accounts using AssumeRole.. 103
Same account access with AssumeRole.. 103
Cross account access with AssumeRole..104

ECS IAM SAML support...105
SAML-compliant provider setup.. 106
AssumeRoleWithSAML... 107
Attributes in SAML assertion.. 107
User-specific access using SAML keys.. 108
GetFederationToken... 109
GetFederationToken request parameters.. 110

Chapter 4: OpenStack Swift... 114
OpenStack Swift support in ECS... 114
OpenStack Swift supported operations..114
Swift extensions... 116
Swift byte range extensions.. 116

Updating a byte range within an object.. 116
Overwriting part of an object.. 117
Appending data to an object..118
Reading multiple byte ranges within an object..119

Retention.. 119
File system enabled... 120
S3 and Swift interoperability.. 120

Contents 3

OpenStack Swift authentication..120
Create Swift users in the ECS Portal.. 121
OpenStack Version 1 authentication ...121
OpenStack Version 2 authentication.. 122
Authentication using ECS Keystone V3 integration.. 124

Authorization on Container... 126
ECS Swift error codes.. 127

Chapter 5: EMC Atmos.. 129
EMC Atmos API support in ECS.. 129
Supported EMC Atmos REST API Calls... 129
Unsupported EMC Atmos REST API Calls... 131
Subtenant Support in EMC Atmos REST API Calls..131
API Extensions...131

Appending data to an object... 132
ECS support for retention and retention expiration periods for Atmos objects.. 132

ECS Atmos error codes..136

Chapter 6: CAS.. 140
Setting up CAS support in ECS..140
Cold Storage... 140
Compliance...141

Platform hardening and Compliance.. 141
Compliance and retention policy... 141
Compliance agent.. 142

CAS retention in ECS..142
Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max

governor...144
Set up namespace retention policies.. 148
Create and set up a bucket for a CAS user.. 148
Set up a CAS object user...149
Set up bucket ACLs for CAS.. 149
ECS Management APIs that support CAS users... 150
Content Addressable Storage (CAS) SDK API support... 150

CAS connection string...151
ECS CAS error codes... 152
Enabling data2 IP in CAS... 156

Chapter 7: ECS Management REST API..157
ECS Management REST API introduction... 157
Authenticate with the ECS Management REST API...157

Authenticate without cookies .. 157
Logout.. 159
ECS Management REST API whoami command..159
ECS Management REST API summary...160

Appendix A: Hadoop core-site xml properties... 163
Hadoop core-site.xml properties for ECS HDFS..163

Sample core-site.xml for simple authentication mode..165

4 Contents

Appendix B: External Key Management...167
External key management... 167

Migrate KeySecure to Thales CipherTrust Manager...170

Appendix C: Document feedback.. 171
ecs_c_customer_feedback_external.. 171

Index..172

Contents 5

Notes, cautions, and warnings

NOTE: A NOTE indicates important information that helps you make better use of your product.

CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid

the problem.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.

© 2023 Dell Inc. or its subsidiaries. All rights reserved. Dell Technologies, Dell, and other trademarks are trademarks of Dell Inc. or its
subsidiaries. Other trademarks may be trademarks of their respective owners.

S3
ECS supports the S3 API and the extension, this section provides information about authenticating with the service, and using
the Software Development Kit (SDK) to develop clients to access the service.

Some aspects of bucket addressing and authentication are specific to ECS. To configure an existing application to talk to ECS,
or develop a new application that uses the S3 API to talk to ECS, see the ECS Administration Guide https://www.dell.com/
support/.

Topics:

• Revision history
• Amazon S3 API support in ECS
• S3 API supported and unsupported features
• Bucket policy support
• Object Tagging
• S3 Object Lock
• Object lifecycle management
• S3 Extensions
• Metadata Search
• S3 and Swift Interoperability
• Create and manage secret keys
• Authenticating with the S3 service
• Using s3curl with ECS
• Use SDKs to access the S3 service
• ECS S3 error codes
• Hadoop S3A for ECS
• Enabling data2 IP in ECS S3

Revision history
Table 1. Revision history

Revision Date Description of change

December 2022 Rev 1.0 Initial release of ECS 3.8

April 2023 Rev 1.1 Updates to "CAS connection string" and "Limitations" on "Metadata search with
Tokenization"

April 2024 Rev 1.2 ECS 3.8.1 updates

Amazon S3 API support in ECS
ECS supports the Amazon Simple Storage Service (Amazon S3) Application Programming Interface (API).

Table 2. S3 Object Service

Protocol Ports

HTTP 9020

HTTPS 9021

1

S3 7

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

S3 API supported and unsupported features
ECS supports a subset of the Amazon S3 REST API.

The following sections detail the supported and unsupported APIs:

Supported S3 APIs

Table 3. Supported S3 APIs

Feature Notes

GET Service ECS supports marker and max-keys parameters to enable paging of bucket list.

GET /?marker=<bucket>&limit=<num>

For example:

GET /?marker=mybucket&limit=40

DELETE Bucket ECS simplified bucket deletion request is initiated through this endpoint.

For example:

DELETE /<bkt> -H "x-emc-empty-bucket:true"

DELETE Bucket cors -

DELETE Bucket life cycle Only the expiration part is supported in life cycle. Policies that are related to archiving (AWS
Glacier) are not supported. Lifecycle is not supported on file system-enabled buckets.

DELETE Bucket policy -

GET Bucket (List Objects) ● For file system-enabled buckets, / is the only supported delimiter when listing objects in
the bucket.

● ECS returns the list results in UTF-16 binary order.

● For file system-enabled buckets, / is the only supported delimiter when listing objects in
the bucket.

● ECS returns the list results in UTF-16 binary order.

ECS simplified bucket delete request status returns empty bucket status if active:

GET /<bkt>?empty-bucket-status

-

Only the expiration part is supported in life cycle. Policies that are related to archiving (AWS
Glacier) are not supported. Lifecycle is not supported on file system-enabled buckets.

-

-

-

GET Bucket (List Objects)
Version 2

-

GET Bucket cors -

GET Bucket acl Where PUT is performed on an existing bucket, refer to Behavior where bucket already exists.

GET Bucket life cycle -

GET Bucket policy -

8 S3

Table 3. Supported S3 APIs (continued)

Feature Notes

GET Bucket Object versions Only the expiration part is supported in life cycle. Policies that are related to archiving (AWS
Glacier) are not supported. Lifecycle is not supported on file system-enabled buckets.

GET Bucket versioning Cannot configure the bucket policies for file system-enabled or CAS-enabled buckets. Cannot
configure the bucket policies for operations that ECS does not support. More information
about bucket policy support is provided in Bucket policy support.

PUT Bucket versioning -

DELETE Object

Delete Multiple Objects -

GET Object

GET Object ACL -

HEAD Object -

PUT Object Supports chunked PUT
PUT Object acl -

PUT Object - Copy If the object size is greater than 5 GB, use Upload Part - Copy instead of PUT Object
- Copy.

OPTIONS object -

GET Object tagging -

PUT Object tagging -

DELETE Object tagging -

Initiate Multipart Upload -

Upload Part -

Upload Part - Copy -

Complete Multipart Upload ECS returns an ETag of 00 for this request, which differs from the Amazon S3 response.

Abort Multipart Upload -

List Parts -

PUT Bucket Object Lock -

GET Bucket Object Lock -

PUT Bucket enable-object-
lock

This is a custom API (not defined by S3)

PUT Object legal hold -

GET Object legal hold -

PUT Object retention -

GET Object retention -

NOTE:

● Creation of buckets using names with fewer than three characters fails with 400 Bad Request,
InvalidBucketName.

● When creating a bucket or object with empty content, ECS returns 400 invalid content-length value, which

differs from AWS which returns 400 Bad Request.

● Copying an object to another bucket that indexes the same user metadata index key but with a different datatype is not

supported and fails with 500 Server Error.

S3 9

● When listing the objects in a bucket, if you use a prefix and delimiter but supply an invalid marker, ECS throws 500

Server Error, or 400 Bad Request for a file system-enabled bucket. However, AWS returns 200 OK and the objects are

not listed.

● For versioning enabled buckets, ECS does not create a delete marker when a deleted object is deleted again. This is

different from AWS, which always inserts delete marker for deleting deleted objects in versioning enabled buckets. This

change in behavior is only applicable when the deleted object is deleted again from owner zone.

Table 4. Additional features

Feature Notes

Presigned URLs ECS supports use of presigned URLs to grant access to objects without needing credentials.
More information can be found at: https://docs.aws.amazon.com/AmazonS3/latest/dev/
PresignedUrlUploadObject.html.

Chunked PUT PUT operation can be used to upload objects in chunks, which enable content to be sent
before the total size of the payload is known. Chunked transfer uses the Transfer-Encoding
header (Transfer-Encoding: chunked) to specify that content is transmitted in chunks.

Unsupported S3 APIs

Table 5. Unsupported S3 APIs

Feature Notes

DELETE Bucket tagging -

DELETE Bucket website -

GET Bucket location ECS is only aware of a single Virtual Data Center (VDC).

GET Bucket logging -

GET Bucket notification Notification is only defined for reduced redundancy feature in S3. ECS does not support
notifications.

GET Bucket tagging -

GET Bucket requestPayment ECS uses its own model for payments.

GET Bucket website -

PUT Bucket logging -

PUT Bucket notification Notification is only defined for the reduced redundancy feature in S3. ECS does not support
notifications.

PUT Bucket tagging -

PUT Bucket requestPayment ECS uses its own model for payments.

PUT Bucket website -

Object APIs

GET Object torrent -

POST Object -

POST Object restore The POST Object restore operation is related to AWS Glacier, which is not supported in ECS.

SELECT Object Content -

10 S3

https://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html

Behavior where bucket already exists

When an attempt is made to create a bucket with a name that already exists, the behavior of ECS can differ from AWS.

AWS always returns 409 Conflict when a user who has FULL CONTROL permissions on the bucket, or any other
permissions, attempts to recreate the bucket. When an ECS user who has FULL_CONTROL or WRITE_ACP on the bucket
attempts to recreate the bucket, ECS returns 200 OK and the ACL is overwritten, however, the owner is not changed. An ECS
user with WRITE/READ permissions will get 409 Conflict if they attempt to recreate a bucket.

Where an attempt to recreate a bucket is made by the bucket owner, ECS returns 200 OK and overwrites the ACL. AWS
behaves in the same way.

Where a user has no access privileges on the bucket, an attempt to recreate the bucket throws a 409 Conflict error. AWS
behaves in the same way.

Bucket policy support
ECS supports the setting of S3 bucket access policies. Unlike ACLs, which either permit all actions or none, access policies
provides specific users, or all users, conditional and granular permissions for specific actions. Policy conditions can be used to
assign permissions for a range of objects that match the condition and can be used to automatically assign permissions to newly
uploaded objects.

How access to resources is managed when using the S3 protocol is described in https://docs.aws.amazon.com/AmazonS3/
latest/dev/s3-access-control.html and you can use the information as the basis for understanding and using S3 bucket policies
in ECS. This section provides basic information about the use of bucket policies, and to identify the differences when using
bucket policies with ECS.

The following provides an example of an ECS bucket policy:

{
 "Version": "2012-10-17",
 "Id": "S3PolicyIdNew2",
 "Statement":[
 {
 "Sid":"Granting PutObject permission to user2 ",
 "Effect":"Allow",
 "Principal": "user_n2",
 "Action":["s3:PutObject"],
 "Resource":["PolicyBuck1/*"],
 "Condition": {
 "StringEquals": {"s3:x-amz-server-side-encryption": ["AES256"]}
 }
 }
]
}

Each policy is a JavaScript Object Notation (JSON) document that includes a version, an identifier, and one or more statements.

Version The Version field specifies the policy language version and can be either 2012-10-17 or 2008-10-17.
If the version is not specified, 2008-10-17 is automatically inserted.

It is good practice to set the policy language for a new policy to the latest version, 2012-10-17.

Id The Id field is optional.

Each statement includes the following elements:

SID A statement ID is a string that describes what the statement does.

Resources The bucket or object that is the subject of the statement. The resource can be associated with a
Resource or NotResource statement.

S3 11

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

The resource name is the bucket and key name and is specified differently depending on whether you are
using virtual host style addressing or path style addressing, as shown:

Host Style: http://bucketname.ns1.emc.com/objectname
Path Style: http://ns1.emc.com/bucketname/objectname

In either case, the resource name is: bucketname/objectname.

You can use the (*) and (?) wildcard characters, where asterisk (*) represents any combination of
zero or more characters and a question mark (?) represents any single character. For example, you can
represent all objects in bucket that is called bucket name, using:

bucketname/*

Actions The set of operations that you want to assign permissions to (enable or deny). The supported operations
are listed in Supported bucket policy operations.

The operation can be associated with an Action or NotAction statement.

Effect Can be set to Allow or Deny to determine whether you want to enable or deny the specified actions.

Principal The ECS object user who is enabled or denied the specified actions.

To grant permissions to everyone, as anonymous access, you can set the principal value to a wildcard,
"*", as shown:

"Principal":"*"

Conditions The condition under which the policy is in effect. The condition expression is used to match a condition
that is provided in the policy with a condition that is provided in the request.

The following condition operators are not supported: Binary, ARN, IfExists, Check Key Exists. The
supported condition keys are listed in Supported bucket policy conditions.

NOTE: ECS bucket policies do not support federated users, nor do they support Amazon IAM users and roles.

More information about the elements that you can use in a policy are described in the Amazon S3 documentation, https://
docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html.

Creating, Assigning, and Managing Bucket Policies

This section describes about managing bucking policies.

You can create a bucket policy for a bucket from the ECS Portal (see the ECS Administration Guide in https://www.dell.com/
support/). It is also possible to create a policy using another editor, and associate the policy with a bucket using the ECS
Management REST API or using the ECS S3 API.

The ECS Management REST API provides the following APIs to enable bucket policy subresources to be added, retrieved, and
deleted:

● PUT /object/bucket/{bucketName}/policy
● GET /object/bucket/{bucketName}/policy
● DELETE /object/bucket/{bucketName}/policy
To set a policy using the ECS Management REST API you must have either the ECS System Administrator or Namespace
Administrator role.

The ECS S3 API provides the following APIs:

● PUT Bucket Policy
● GET Bucket Policy
● DELETE Bucket Policy

NOTE:

To set a policy using the S3 API you must be the bucket owner.

Details of these APIs can be found in the ECS API Reference.

12 S3

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Bucket policy scenarios

In general, the bucket owner has full control on a bucket and can grant permissions to other users and can set S3 bucket
policies using an S3 client. In ECS, it is also possible for an ECS System or Namespace Administrator to set bucket policies using
the Bucket Policy Editor from the ECS Portal.

You can use bucket policies in the following typical scenarios:

● Grant bucket permissions to a user
● Grant bucket permissions to all users
● Automatically assign permissions to created objects

Grant bucket permissions to a user

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that you want to change the
permissions for. Set the principal attribute to the name of the user, and specify one or more actions that you want to enable.

The following example shows a policy that grants a user who is named user1 the permission to update and read objects in the
bucket that is named mybucket:

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "Grant permission to user1",
 "Effect": "Allow",
 "Principal": ["user1"],
 "Action": ["s3:PutObject","s3:GetObject"],
 "Resource":["mybucket/*"]
 }
]
}

You can also add conditions. For example, if you only want the user to read and write object when accessing the bucket from a
specific IP address, add a IpAddress condition as shown in the following policy:

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "Grant permission ",
 "Effect": "Allow",
 "Principal": ["user1"],
 "Action": ["s3:PutObject","s3:GetObject"],
 "Resource":["mybucket/*"]
 "Condition": {"IpAddress": {"aws:SourceIp": "<Ip address>"}
 }
]
}

Grant bucket permissions to all users

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that you want to change the
permissions for. Set the principal attribute as anybody (*), and specify one or more actions that you want to enable.

The following example shows a policy that grants anyone permission to read objects in the bucket that is named mybucket:

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId2",
 "Statement": [
 {
 "Sid": "statement2",
 "Effect": "Allow",

S3 13

 "Principal": ["*"],
 "Action": ["s3:GetObject"],
 "Resource":["mybucket/*"]
 }
]
}

Automatically assign permissions to created objects

You can use bucket policies to automatically enable access to ingested object data. In the following example bucket policy,
user1 and user2 can create subresources (that is, objects) in the bucket that is named mybucket and can set object ACLs.
With the ability to set ACLs, the users can then set permissions for other users. If you set the ACL in the same operation, a
condition can be set. Such that a canned ACL public-read must be specified when the object is created. This ensures anybody
can read all the created objects.

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId3",
 "Statement": [
 {
 "Sid": "statement3",
 "Effect": "Allow",
 "Principal": ["user1", "user2"],
 "Action": ["s3:PutObject, s3:PutObjectAcl"],
 "Resource":["mybucket/*"]
 "Condition":{"StringEquals":{"s3:x-amz-acl":["public-read"]}}
 }
]
}

Supported bucket policy operations

The following tables show the supported permission keywords and the operations on bucket, object, and sub-resource that they
control.

Table 6. Permissions for Object Operations

Permission keyword Supported S3 operations

s3:GetObject applies to latest
version for a version-enabled
bucket

GET Object, HEAD Object

s3:GetObjectVersion GET Object, HEAD Object This permission supports requests that specify a version number

s3:PutObject PUT Object, POST Object, Initiate Multipart Upload, Upload Part, Complete Multipart Upload
PUT Object - Copy

s3:GetObjectAcl GET Object ACL

s3:GetObjectVersionAcl GET ACL (for a Specific Version of the Object)

s3:PutObjectAcl PUT Object ACL

s3:PutObjectVersionAcl PUT Object (for a Specific Version of the Object)

s3:DeleteObject DELETE Object

s3:DeleteObjectVersion DELETE Object (a Specific Version of the Object)

s3:ListMultipartUploadParts List Parts

s3:AbortMultipartUpload Abort Multipart Upload

14 S3

Table 7. Permissions for Bucket Operations

Permission keyword Supported S3 operations

s3:DeleteBucket DELETE Bucket

s3:ListBucket GET Bucket (List Objects), HEAD Bucket

s3:ListBucketVersions GET Bucket Object versions

s3:GetLifecycleConfiguration GET Bucket lifecycle

s3:PutLifecycleConfiguration PUT Bucket lifecycle

Table 8. Permissions for Bucket Sub-resource Operations

Permission keyword Supported S3 operations

s3:GetBucketAcl GET Bucket acl

s3:PutBucketAcl PUT Bucket acl

s3:GetBucketCORS GET Bucket cors

s3:PutBucketCORS PUT Bucket cors

s3:GetBucketVersioning GET Bucket versioning

s3:PutBucketVersioning PUT Bucket versioning

s3:GetBucketPolicy GET Bucket policy

s3:DeleteBucketPolicy DELETE Bucket policy

s3:PutBucketPolicy PUT Bucket policy

Supported bucket policy conditions

The condition element is used to specify conditions that determine when a policy is in effect.

The following tables show the condition keys that are supported by ECS and that can be used in condition expressions.

Table 9. Supported generic AWS condition keys

Key name Description Applicable operators

aws:CurrentTime Used to check for date/time conditions Date operator

aws:EpochTime Used to check for date/time conditions using a date in epoch or UNIX time
(see Date Condition Operators).

Date operator

aws:principalType Used to check the type of principal (user, account, federated user, etc.)
for the current request.

String operator

aws:SourceIp Used to check the requester's IP address. String operator

aws:UserAgent Used to check the requester's client application. String operator

aws:username Used to check the requester's user name. String operator

Table 10. Supported S3-specific condition keys for object operations

Key name Description Applicable permissions

s3:x-amz-acl Sets a condition to require specific
access permissions when the user
uploads an object.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

s3:x-amz-grant-permission (for explicit
permissions), where permission can
be:read, write, read-acp, write-acp, full-
control

Bucket owner can add conditions
using these keys to require certain
permissions.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

S3 15

Table 10. Supported S3-specific condition keys for object operations (continued)

Key name Description Applicable permissions

s3:x-amz-server-side-encryption Requires the user to specify this header
in the request.

s3:PutObject, s3:PutObjectAcl

s3:VersionId Restrict the user to accessing data only
for a specific version of the object

s3:PutObject, s3:PutObjectAcl,
s3:DeleteObjectVersion

Table 11. Supported S3-specific condition keys for bucket operations

Key name Description Applicable permissions

s3:x-amz-acl Set a condition to require specific access
permissions when the user uploads an
object

s3:CreateBucket, s3:PutBucketAcl

s3:x-amz-grant-permission (for explicit
permissions), where permission can
be:read, write, read-acp, write-acp, full-
control

Bucket owner can add conditions using
these keys to require certain permissions

s3:CreateBucket, s3:PutBucketAcl

s3:prefix Retrieve only the object keys with a
specific prefix.

s3:ListBucket, s3:ListBucketVersions

s3:delimiter Require the user to specify the delimiter
parameter in the Get Bucket (List
Objects) request.

s3:ListBucket, s3:ListBucketVersions

s3:max-keys Limit the number of keys ECS returns
in response to the Get Bucket (List
Objects) request by requiring the user to
specify the max-keys parameter.

NOTE: In EXF900 systems, you can
set the max-keys parameter value

up to 20000 per list request.

s3:ListBucket, s3:ListBucketVersions

Object Tagging
Object Tagging allows you to categorize the objects by assigning tags to the individual objects. A single object can have multiple
tags that are associated with it, enabling multidimensional categorization.

A tag could describe some sort of sensitive information like a health record, or you can tag an object. to a certain product that
can be categorized as confidential. Tagging is a subresource of an object that has a life-cycle, integrated with object operations.
You can add tags to new objects when you upload them, or add tags to existing objects. It is acceptable to use tags to label
objects containing confidential data, such as Personally Identifiable Information (PII) or Protected Health Information (PHI). The
tags must not contain any confidential information, as tags can be viewed without having the read permission to an object.

WARNING: Object Tagging does not support file system-enabled buckets with S3 protocol.

Two parameters are available in ECS Object Tagging:

Tag A tag is a key-value pair where both the key and the value are represented as a string.

Tag set A set of tags associated with an object. Tags that are associated with an object must have unique tag
keys. You can associate up to 10 tags with an object. However, the additional storage overhead is about 4
kb in UTF-8 and sixteen kb in UTF-32.

NOTE:

● A single tag would require about 384 bytes on disk if stored in UTF-8 encoding or about 1.5 kb if stored as UTF-32.

● Allowed characters are letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : /

@

● A tag key can be up to 128 Unicode characters in length, and tag values can be up to 256 Unicode characters in length.

● The key and values are case-sensitive.

16 S3

● Object Tagging API support is available from ECS 3.5 and later versions. For more information about Object Tagging

APIs, see Manage Object Tagging.

Additional information about Object Tagging

This section provides information about Object Tagging in IAM, Object Tagging with bucket policies, handling Object Tagging
during TSO/PSO, and Object Tagging during object lifecycle management.

Object Tagging in
IAM

The key function of Object Tagging as categorization system comes when it is integrated with Polices
from IAM. This allows you to configure specific permissions for the users. For example, You can add
a policy that allows everyone to access objects with a specified tag or you can configure and grant
permissions to users, who can manage the tags on specific objects. The other key aspect with Object
Tagging is how and where the tags would be persisted. This is important because, it has a direct impact
on various aspects of the system.

Object Tagging
with bucket
policies

Object Tagging allows you to categorize the objects, also tagging gets integrated with various policies.
Lifecycle management policy allows you to configure at a bucket level. Earlier versions of ECS support
Expiration, Abort Incomplete Uploads, and Deletion of Expired Delete Marker. The filter could include
multiple conditions including a tag-based condition. Each tag in the filter condition must match the key
and the value.

Object Tagging
during TSO/PSO

Object Tagging is another entry set in system metadata, no special handling is required during TSO/PSO.
There is a set limit on the number of tags that are allowed to be associated with each object, size of
system metadata along with Object Tagging is well with in the memory limits.

Object Tagging
during object
lifecycle
Management

Object Tagging is part of system metadata and handled simultaneously with system metadata handling,
during lifecycle management. The Expiration Logic and Lifecycle Delete Scanner requires to understand
tag-based policies. Object tags enable fine-grained object lifecycle management in which you can specify
a tag-based filter, in addition to a key name prefix, in a lifecycle rule.

Object Tagging operations

This section describes all the API-related operations that are specific to object tagging.

By default, the bucket owner has permissions to PUT, GET, and DELETE tags.

All the operations that have the concept of tags are categorized into management operations and object operation with tagging.
The operations use the tagging subresource to manipulate the tags and apply them to the current version of an object. To
manipulate tags on a previous version, add versionId parameter.

Table 12. API operations related to object tagging

Operations Path Description

PUT object tagging PUT /ObjectName?tagging Adds or replaces a set of tags to an existing object.

GET object tagging GET /ObjectName?tagging Returns the set of tags that are associated with the
requested object.

DELETE Object tagging DELETE /ObjectName?tagging Deletes the set of tags that are associated with the
requested object.

The object operations with tagging include existing object operations that can perform tag related actions such as, assigning the
tags at the time of object creation or during the copy operation.

Table 13. Object operations with tagging

Operations Request/Response Description

PUT object Request header: x-amz-tagging ● Requires WRITE permission and
s3:PutObjectTagging permission.

● The encoding of tags should follow URL query
parameter.

● The tags pass as a request header, so the limit is 2 KB.

S3 17

Table 13. Object operations with tagging (continued)

Operations Request/Response Description

Initiate Multipart
Upload

Request header: x-amz-tagging ● Requires WRITE permission and
s3:PutObjectTagging permission.

● The encoding of tags must follow URL query
parameter.

● The tags pass as a request header, so the limit is 2 KB.

GET object Response header: x-amz-tagging-
count

● Returns the count of tags that are associated with the
object.

● Nothing returns, if the permission capability is not set.
● The count is not returned, If no tags are associated

with the object.

PUT object COPY Request header: x-amz-tagging-
directive

● Specifies source object tags copy policy:
○ COPY: Copies tags as-is
○ REPLACE: Replaces them with the new set from

the request.
● The default behavior is COPY unless explicitly specified

by the user.
● In case of REPLACE, the tags must follow URL query

parameter encoding.
● No tags are allowed with REPLACE directive, results

in no tags on the target object.

Add or extend internal APIs to support tagging. The table defines the S3 APIs to manipulate the tags.

Table 14. S3 APIs

API support Action Description

updateObjectTags() s3:PutObjectTagging Add or replace set of tags to an existing
object.

updateObjectVersionTags() s3:PutObjectVersionTagging Add or replace set of tags to an existing
version of an object.

getObjectTags() s3:GetObjectTagging Retrieve all tags associated with current
version of an object.

getObjectVersionTags() s3:GetObjectVersionTagging Retrieve all tags associated with specified
version of an object.

deleteObjectTags() s3:DeleteObjectTagging Delete all tags associated with current
version of an object.

deleteObjectVersionTags() s3:DeleteObjectVersionTaggin
g

Delete all tags associated with specified
version of an object.

Manage Object Tagging

This section describes all the supported APIs that are required to manage Object Tagging.

PUT object
tagging

● updateObjectTags.

● Returns with ObjectWriteResponse.

● Replaces the existing tag set on an object with objectInfo to new objectTags. This API does not
merge existing tags with new tags,objectTags passed to this API replaces the existing objectTags
(if any) for the object with objectInfo.

NOTE:

● If you send this request with an empty tag set, it deletes the existing tags for an object with objectInfo.

● Use the DELETE Object Tagging request to delete all the tags for an object.

18 S3

GET Object
Tagging

● getObjectTags.

● Returns with set of tags associated with object.
● Retrieves the set of tags that are associated with requested object with objectInfo and

versionId.

DELETE Object
Tagging

● deleteObjectTags
● Returns true if deletion of object tag is successful for object.
● Deletes all tags that are associated with an object that is identified by objectInfo for current/

versionId of an object.

Table 15. Object Tagging parameters

Parameter Description

objectInfo Unique ID associated with the object to which, the objectTags must be updated.

keypoolData Information regarding keypool.

versionId Version of the object on which, the tags must be updated. Value NULL retrieves tags
for current version of the object

credential Permission to update tags for an object

objectTags Set of tags that must be associated with an object.

S3 Object Lock
ECS allows you to store objects using a write-once-read-many (WORM) model through S3 Object Lock. This feature prevents
objects from being deleted or overwritten for a specified time or indefinitely. Also, S3 Object Lock helps to meet WORM storage
related regulatory requirements and adds a protection layer against object modifications and deletion.

NOTE:

● ECS S3 Object Lock feature supports only the versioning enabled buckets.

● There is no ECS user interface for Object Lock. It can be accessed through ECS Object Lock APIs. For the Object

Lock API examples, see Object Lock API Examples and for the list of supported S3 APIs, see S3 API supported and

unsupported features.

● The locked objects are protected from lifecycle deletions.

Managing Object Lock

ECS S3 Object Lock allows you to manage object retention through retention periods and legal holds.
● Through retention period, you can specify a period during which an object remains locked. During the specified period, the

object is WORM-protected, that is, the object cannot be overwritten or deleted.
● Legal hold provides the same protection similar to retention period. However, legal hold is independent from retention period

and it does not have an expiration date. Legal hold can be remained in objects until you explicitly remove it.

Retention period and legal hold can be specified in objects by any user who has the appropriate Object Lock permissions. For the
list of supported Object Lock condition keys and permissions, see ECS S3 Object Lock condition keys and ECS S3 Object Lock
permissions.

Retention mode

Retention mode

Retention modes provide additional protection to your object version that is protected by Object Lock.

Retention modes Description

Governance mode In governance mode,
● Users cannot overwrite or delete an object version.

S3 19

Retention modes Description

● Users with s3:PutObjectRetention permission can increase an object retention period.

● Users with special s3:BypassGovernanceRetention permission can remove or shorten an
object retention.

● Users with s3:BypassGovernanceRetention permission can also delete locked objects.

Compliance mode In compliance mode,
● Users cannot overwrite or delete an object version.
● Users with s3:PutObjectRetention permission can increase an object retention period.

● Any user cannot remove or shorten an object retention.

Object Lock and ADO

Object Lock and ADO can be enabled together in a bucket by users with system administrator privileges, when the data loss
risks during a temporary site outage are well understood.

Access During Outage (ADO) is a behavior that allows data access during a temporary site outage (TSO). When Object Lock
and ADO are enabled together in a bucket, there is a risk of losing locked versions during a TSO. As a result, for ADO buckets,
setting Object Lock is denied by default. You can allow Object Lock and ADO to co-exist, when you have system administrator
privileges, and you understand the risk of losing locked versions of data during a TSO.

For more information about ADO, see the ECS Administration Guide.

NOTE:

● This feature cannot be managed through the UI, it can be viewed or modified only through the Management API.

● It is only available in ECS systems completely upgraded to 3.8 for all zones.

● Object Lock and ADO can be enabled or disabled on a namespace as default behavior, which will be applicable only to

new buckets.

● Object Lock and ADO can be enabled in buckets, and if not specified will use the namespace default value.

● Once this feature is enabled in a bucket, it cannot be disabled.

Common issues while enabling Object Lock and ADO

ECS 3.8 allows you to enable Object Lock and ADO in a bucket when you have system administrator privileges to allow it. The
following issues should be noted.

If you want to set up both Object Lock and ADO, system administrators can enable new flag on individual buckets or set as
default for all future bucket creations for a namespace. Once set to allowed, they can enable Object Lock and ADO on that
bucket.

If you want to change Object Lock and ADO from allowed to not allowed, note that it is not possible. Once Object Lock and ADO
are enabled in a bucket, it cannot be disabled.

In Object Lock and ADO buckets, there is a risk of data loss during a temporary site outage. Users should understand the risks
before enabling both the services together.

ECS S3 Object Lock condition keys

ECS S3 Object Lock condition keys allow you to limit what retention period and legal hold can be specified in objects.

Condition Key Description

s3:object-lock-legal-hold Enables enforcement of the specified object legal hold status

s3:object-lock-mode Enables enforcement of the specified object retention mode

s3:object-lock-retain-until-date Enables enforcement of a specific retain-until-date

s3:object-lock-remaining-retention-days Enables enforcement of an object relative to the remaining
retention days

20 S3

ECS S3 Object Lock permissions

ECS S3 Object Lock permissions allow you to manage retention period and legal hold that are specified in objects.

Permissions Operations

s3:PutBucketObjectLockConfiguration PUT Bucket Object Lock configuration

s3:GetBucketObjectLockConfiguration GET Bucket Object Lock configuration

s3:PutObjectLegalHold PUT Object Legal Hold, PUT Object

s3:GetObjectLegalHold GET Object Legal Hold, GET Object

s3:PutObjectRetention PUT Object Retention, PUT Object

s3:GetObjectRetention Get Object Retention, GET Object

s3:BypassGovernanceRetention PUT Object Retention, DELETE Object, DELETE Objects

s3:EnableObjectLock Enable object lock for existing buckets

Object Lock API Examples

This section lists s3curl examples of Object Lock APIs.

NOTE: Put and Get Object Lock APIs can be used with and without versionId parameter. If no versionId parameter is

used, then the action applies to the latest version.

Operation API request examples

Create lock-enabled bucket s3curl.pl --id=ecsflex --createBucket -- http://${s3ip}/my-
bucket -H "x-amz-bucket-object-lock-enabled: true"

Enable object lock on existing
bucket s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket?enable-object-

lock -X PUT

Get bucket default lock
configuration s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket?object-lock

Put bucket default lock
configuration s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket?object-lock

-X PUT \
 -d "<ObjectLockConfiguration><ObjectLockEnabled>Enabled</
ObjectLockEnabled>

 <Rule><DefaultRetention><Mode>GOVERNANCE</Mode><Days>1</Days></
DefaultRetention></Rule></ObjectLockConfiguration>"

Get legal hold s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket/obj?legal-hold

Put legal hold on create s3curl.pl --id=ecsflex --put=/root/100b.file -- http://${s3ip}/
my-bucket/obj -H "x-amz-object-lock-legal-hold: ON"

Put legal hold on existing
object s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket/obj?legal-

hold -X PUT -d "<LegalHold><Status>OFF</Status></LegalHold>"

Get retention s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket/obj?retention

S3 21

Operation API request examples

Put retention on create s3curl.pl --id=ecsflex --put=/root/100b.file -- http://${s3ip}/
my-bucket/obj -H "x-amz-object-lock-mode: GOVERNANCE" -H "x-amz-
object-lock-retain-until-date: 2030-01-01T00:00:00.000Z"

Put retention on existing
object s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket/obj?

retention -X PUT -d "<Retention><Mode>GOVERNANCE</
Mode><RetainUntilDate>2030-01-01T00:00:00.000Z</
RetainUntilDate></Retention>"

Put retention on existing
object (with bypass) s3curl.pl --id=ecsflex -- http://${s3ip}/my-bucket/obj?

retention -X PUT -d "<Retention><Mode>GOVERNANCE</
Mode><RetainUntilDate>2030-01-01T00:00:00.000Z</
RetainUntilDate></Retention>" -H "x-amz-bypass-governance-
retention: true"

Enable allowing object lock
and ADO as the default on
existing namespace

NOTE: The flag does not
turn on ADO or object
lock, it just allows both to
be set

curl -v -k -H "$TOKEN" -H 'Accept:application/
json' -H 'Content-Type:application/json' -X PUT -d
‘{“is_object_lock_with_ado_allowed”:”true”}’ https://$vm1:4443/
object/namespaces/namespace/s3

Enable allowing object lock
and ADO as the default when
creating namespace

curl -v -k -H "$TOKEN" -H 'Accept:application/json' -H 'Content-
Type:application/json' -X POST –d @./Namespace.json https://
$vm1:4443/object/namespaces/namespace
Namespace.json:
{ "namespace": "mynamespace","default_data_services_vpool":
"urn:some-vpool","is_encryption_enabled":
"false","is_stale_allowed": "false","compliance_enabled":
"false","is_object_lock_with_ado_allowed": "true"}

Enable allowing object lock
and ADO on existing bucket curl -s -k -H "$TOKEN" -H 'Accept:application/json'

 -X PUT https://$vm1:4443/object/bucket/<bucket>/allow-object-
lock-with-ado?namespace=<namespace>

Enable allowing object lock
and ADO when creating
bucket

curl -v -k -H "$TOKEN" -H 'Accept:application/json' -H 'Content-
Type:application/json' -X POST -d @./bucket-create.json https://
$vm1:4443/object/bucket
Bucket-create.json:
{…
"is_object_lock_with_ado_allowed": "true“
}
Is_object_lock_with_ado_allowed – value used if present,
otherwise will use default from namespace

Object lifecycle management
ECS supports S3 Lifecycle Configuration on both version-enabled buckets and non-version-enabled buckets.

Where you need to modify objects and delete objects, but need to ensure that the objects are still retained for a period, you
can enable versioning on a bucket and use the lifecycle capability to determine when deleted versions of objects will be removed
from ECS.

Versioning and lifecycle are standard S3 features. However, lifecycle expiration is closely related to retention, which is an ECS
extension. If the lifecycle expires before the retention period expires, the object will not be deleted until the retention period is
over.

22 S3

● Lifecycle cannot be enabled on FS enabled buckets.
● Lifecycle is a bucket level concept.
● Maximum of 1000 lifecycle rules per bucket is applicable.
● There may be a delay between the expiration date and the date at which S3 removes an object.
● Always round up the resulting time to the next day midnight UTC.
● For expiration, the days are calculated since the last modified date (= Creation date for the objects not yet modified/

deleted).
● If you delete the data accidentally, raise a Service Request (SR) with the support team. For more information about

recovering the data, see KB 539120.
● For noncurrentexpiration, the days are calculated since the object became noncurrent.
● The date-based rules trigger action on all objects created on or before this date.

Example lifecycle configurations for ECS

The following are some lifecycle configurations examples.

Aborting old MPU's (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-expire-non-current-and-dmarkers-and-mpu</ID>
 <Filter/>
 <Status>Enabled</Status>
 <AbortIncompleteMultipartUpload>
 <DaysAfterInitiation>1</DaysAfterInitiation>
 </AbortIncompleteMultipartUpload>
 </Rule>
</LifecycleConfiguration>

Expiring objects after a certain # of days (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-expire-one-year</ID>
 <Filter/>
 <Status>Enabled</Status>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Expiring NoncurrentVersions of objects after a certain # of days (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-expire-non-current</ID>
 <Filter/>
 <Status>Enabled</Status>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>1</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

Removing expired object delete markers (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-expire-dmarkers</ID>
 <Filter/>
 <Status>Enabled</Status>
 <Expiration>

S3 23

https://support.emc.com/kb/539120

 <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Expire all non-current versions, dmarkers and incomplete MPU's after 1 day

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-expire-non-current-and-dmarkers-and-mpu</ID>
 <Filter/>
 <Status>Enabled</Status>
 <Expiration>
 <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
 </Expiration>
 <AbortIncompleteMultipartUpload>
 <DaysAfterInitiation>1</DaysAfterInitiation>
 </AbortIncompleteMultipartUpload>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>1</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

PUT/GET lifecycle with s3curl examples

The following are PUT and GET lifecycle with s3curl examples. See Using s3curl with ECS for more information.

PUT lifecycle

admin@:/usr/share/s3curl> cat lifecycle.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-non-current-expiration</ID>
 <Filter/>
 <Status>Enabled</Status>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>1</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>
admin@:/usr/share/s3curl>
admin@:/usr/share/s3curl> sudo perl ./s3curl.pl --debug --id=emc --put=lifecycle.xml --
calculateContentMd5 -- "http://192.0.2.0:9020/emc_lifecycle?lifecycle" -v
s3curl: Found the url: host=10.32.169.121; port=9020; uri=/emc_lifecycle;
query=lifecycle;
s3curl: replaced string: lifecycle
s3curl: ordinary endpoint signing case
s3curl: StringToSign='PUT\nFjZKcAgVegBUaGdqfEh/Ig==\n\nTue, 06 Nov 2018 17:28:58 +0000\n/
tom_lifecycle?lifecycle'
s3curl: exec curl -v -H 'Date: Tue, 06 Nov 2018 17:28:58 +0000' -H 'Authorization:
AWS emc:xDTXdXSF+qVIQ4EreEe+iqlHRns=' -L -H 'content-type: ' -H 'Content-MD5:
FjZKcAgVegBUaGdqfEh/Ig==' -T lifecycle.xml http://192.0.2.0:9020/tom_lifecycle?lifecycle
-v
* Hostname was NOT found in DNS cache
* Trying 192.0.2.0...
* Connected to 192.0.2.0 (192.0.2.0) port 9020 (#0)
> PUT /emc_lifecycle?lifecycle HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 192.0.2.0:9020
> Accept: */*
> Date: Tue, 06 Nov 2018 17:28:58 +0000
> Authorization: AWS emc:xDTXdXSF+qVIQ4EreEe+iqlHRns=
> Content-MD5: FjZKcAgVegBUaGdqfEh/Ig==
> Content-Length: 376
> Expect: 100-continue
>
< HTTP/1.1 100 Continue

24 S3

* We are completely uploaded and fine
< HTTP/1.1 200 OK
< Date: Tue, 06 Nov 2018 17:28:58 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0a20a979:166c6842ba5:82ba:5
< x-amz-id-2: 6687ce5967202724ed9a94d44c939438d39cabae9abc5a2c48a60c2c5355f95e
< Content-Length: 0
<
* Connection #0 to host 10.32.169.121 left intact

Troubleshooting LDS:
Enabling debug logging for LDS
LDS log is in resourcesvc-log4j2.xml
<Logger name="com.emc.storageos.data.object.impl.resource.LifeCycleDeleteScanner"
level="DEBUG"/>

Other relevant classes for troubleshooting lifecycle issues from blobsvc-log4j2.xml
<Logger name="com.emc.storageos.data.object.impl.gc.DeleteJobScanner" level="DEBUG"/>
<Logger
name="com.emc.storageos.data.object.impl.file.directoryTable.ObjectDirectoryOperation"
level="DEBUG"/>
<Logger
name="com.emc.storageos.data.object.impl.file.directoryTable.BlobsvcOperationBase"
level="DEBUG"/>
<Logger name="com.emc.storageos.data.object.impl.file.ObjectExpirationHelper"
level="DEBUG"/>

dataheadsvc-log4j2.xml
<Logger name="com.emc.storageos.data.object.RESTAccess.ObjectListingHelper"
level="DEBUG"/>

GET lifecycle

:/usr/share/s3curl # perl ./s3curl.pl --id=EMC -- "http://192.0.2.0:9020/test-bucket/?
lifecycle" -s | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>
 <ID>lifecycle-v2-abortmpu-one-week</ID>
 <Filter/>
 <Status>Enabled</Status>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>1</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>
:/usr/share/s3curl #

Supported lifecycle configuration elements

Table 16. Supported lifecycle configuration elements

Name Description Required

AbortIncompleteMu
ltipartUpload

● Container for specifying when an incomplete
multipart upload becomes eligible for an abort
operation.

● When you specify this lifecycle action, the
rule cannot specify a tag-based filter.

● Child: DaysAfterInitiation
● Type: Container
● Ancestor: Rule

Yes, if no other action is specified for the rule.

S3 25

Table 16. Supported lifecycle configuration elements (continued)

Name Description Required

And ● Container for specify rule filters. These filters
determine the subset of objects to which the
rule applies.

● Type: String
● Ancestor: Rule

Yes, if you specify more than one filter condition
(for example, one prefix and one or more tags).

Date ● Date when you want S3 to take the action.
● The date value must conform to the ISO 8601

format. The time is always midnight UTC.
● Type: String
● Ancestor: Expiration or Transition

Yes, if Days and
ExpiredObjectDeleteMarker are absent.

Days ● Specifies the number of days after object
creation when the specific rule action takes
effect.

● Type: Nonnegative Integer when used with
Transition, Positive Integer when used with
Expiration.

● Ancestor: Expiration, Transition

Yes, if Date and
ExpiredObjectDeleteMarker are absent.

DaysAfterInitiati
on

● Specifies the number of days after initiating
a multipart upload when the multipart upload
must be completed. If it does not complete
by the specified number of days, it becomes
eligible for an abort operation and S3 aborts
the incomplete multipart upload.

● Type: Positive Integer.
● Ancestor:

AbortIncompleteMultipartUpload

Yes, if ancestor is specified.

Expiration ● This action specifies a period in an object's
lifetime when S3 should take the appropriate
expiration action. The action S3 takes
depends on whether the bucket is versioning-
enabled.

● If versioning has never been enabled on
the bucket, S3 deletes the only copy of
the object permanently. Otherwise, if your
bucket is versioning-enabled (or versioning is
suspended), the action applies only to the
current version of the object. A versioning-
enabled bucket can have many versions of
the same object, one current version, and
zero or more noncurrent versions.

● Instead of deleting the current version, S3
makes it a noncurrent version by adding a
delete marker as the new current version.

NOTE:

○ If your bucket state is versioning-
suspended, S3 creates a delete marker
with version ID null. If you have a
version with version ID null, then S3
overwrites that version.

○ To set expiration for noncurrent
objects, you must use the
NoncurrentVersionExpiration
action.

● Type: Container
● Children: Days or Date

Yes, if no other action is present in the Rule.

26 S3

Table 16. Supported lifecycle configuration elements (continued)

Name Description Required

● Ancestor: Rule

Filter ● Container for elements that describe the filter
identifying a subset of objects to which the
lifecycle rule applies. If you specify an empty
filter (<Filter></Filter>), the rule applies to all
objects in the bucket.

● Type: String
● Children: Prefix, Tag
● Ancestor: Rule

Yes

ID ● Unique identifier for the rule. The value
cannot be longer than 255 characters.

● Type: String
● Ancestor: Rule

No

Key ● Specifies the key of a tag. A tag key can be
up to 128 Unicode characters in length.

● Tag keys that you specify in a lifecycle rule
filter must be unique.

● Type: String
● Ancestor: Tag

Yes, if <Tag> parent is specified.

LifecycleConfigur
ation

● Container for lifecycle rules. You can add as
many as 1,000 rules.

● Type: Container
● Children: Rule
● Ancestor: None

Yes

ExpiredObjectDele
teMarker

● On a versioned bucket (versioning-enabled or
versioning-suspended bucket), you can add
this element in the lifecycle configuration
to direct S3 to delete expired object delete
markers. On a nonversioned bucket, adding
this element in a policy is meaningless
because you cannot have delete markers and
the element does not do anything.

● When you specify this lifecycle action, the
rule cannot specify a tag-based filter.

● Type: String
● Valid values: true | false (the value false is

allowed, but it is no-op and S3 does not take
action if the value is false)

● Ancestor: Expiration

Yes, if Date and Days are absent.

NoncurrentDays ● Specifies the number of days an object
is noncurrent before S3 can perform the
associated action.

● Type: Nonnegative Integer when used
with NoncurrentVersionTransition,
Positive Integer when used with
NoncurrentVersionExpiration.

● Ancestor:
NoncurrentVersionExpiration or
NoncurrentVersionTransition

Yes

NoncurrentVersion
Expiration

● Specifies when noncurrent object versions
expire. Upon expiration, S3 permanently
deletes the noncurrent object versions.

Yes, if no other action is present in the Rule.

S3 27

Table 16. Supported lifecycle configuration elements (continued)

Name Description Required

● You set this lifecycle configuration action
on a bucket that has versioning enabled
(or suspended) to request that S3 delete
noncurrent object versions at a specific
period in the object's lifetime.

● Type: Container
● Children: NoncurrentDays
● Ancestor: Rule

Prefix ● Object key prefix identifying one or more
objects to which the rule applies. Empty
prefix (<Prefix></Prefix>) indicates there is
no filter based on key prefix.

NOTE: ECS supports <Prefix> with and
without <Filter>.

PUT Bucket lifecycle with <Filter>

<Filter>
 <Prefix>value</Prefix>
</Filter>

PUT Bucket lifecycle (Deprecated)
without <Filter>

<Prefix>value</Prefix>

● There can be at most one Prefix in a lifecycle
rule Filter.

● Type: String
● Ancestor: Filter or And (if you specify multiple

filters such as a prefix and one or more tags)

No

Rule ● Container for a lifecycle rule. A lifecycle
configuration can contain as many as 1,000
rules.

● Type: Container
● Ancestor: LifecycleConfiguration

Yes

Status ● If Enabled, S3 executes the rule as scheduled.
If Disabled, S3 ignores the rule.

● Type: String
● Ancestor: Rule
● Valid values: Enabled, Disabled.

Yes

Value ● Specifies the value for a tag key. Each object
tag is a key-value pair.

● Tag value can be up to 256 Unicode
characters in length.

● Type: String
● Ancestor: Tag

Yes, if <Tag> parent is specified.

Enabling Lifecycle Delete Scanner (LDS)

The purpose of the LDS scanner is to initiate expiration of objects/versions created before the lifecycle is applied. So for
instance, if there is a bucket created sometime ago and has been in use and now there is a requirement to apply lifecycle, in
such cases LDS must be enabled for lifecycle policies to cover previous objects/versions.

NOTE: LDS is disabled by default. For enabling pre 3.2.1, contact .

28 S3

For enabling 3.2.1 and higher versions, set the com.emc.ecs.resource.lifecycledeletescanner.enable parameter
value as true.

svc_param set com.emc.ecs.resource.lifecycledeletescanner.enable -v "true" -r "Enable
LDS"

S3 Extensions
ECS supports a number of extensions to the S3 API.

The extensions and the APIs that support them are listed below.
● Byte range extensions
● Retention
● File system enabled
● Metadata Search
● S3A support
● S3 Select

Byte range extensions

The following byte range extensions are provided:

● Updating a byte range within an object
● Overwriting part of an object
● Appending data to an object
● Reading multiple byte ranges within an object

NOTE: A byte range operation (update/append/overwrite) on a versioned object does not create a version and latest

version itself is updated.

A byte range operation (update/append/overwrite) on an old version of an object updates the latest version.

Updating a byte range within an object

You can use ECS extensions to the S3 protocol to update a byte range within an object.

Partially updating an object can be very useful in many cases. For example, to modify a binary header that is stored at the
beginning of a large file. On Amazon or other S3 compatible platforms, it is necessary to send the full file again.

The following example demonstrates use of the byte range update. In the example, object1 has the value The quick
brown fox jumps over the lazy dog.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43

The quick brown fox jumps over the lazy dog.

To update a specific byte range within this object, the Range header in the object data request must include the start and end
offsets of the object that you want to update.
The format is: Range: bytes=<startOffset>-<endOffset>.

S3 29

In the example, the PUT request includes the Range header with the value bytes=10-14 indicating to replace the bytes
10,11,12,13,14 by the value that is sent in the request. Here, the new value green is being sent.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 5
Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress

green

HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0
Date: Mon, 12 Mar 2018 20:15:16 GMT

When reading the object again, the new value is now The quick green fox jumps over the lazy dog. A specific
byte range within the object is updated, replacing the word brown with the word green.

GET /bucket1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:16:00 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43

The quick green fox jumps over the lazy dog.

Overwriting part of an object

You can use ECS extensions to the S3 protocol to overwrite part of an object.

To overwrite part of an object, provide the data to be written and the starting offset. The data in the request is written starting
at the provided offset. The format is: Range: <startingOffset>- .

For example, to write the data brown cat starting at offset 10, you issue this PUT request:

PUT /bucket1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress

brown cat

HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b

30 S3

Content-Length: 0
Date: Mon, 12 Mar 2018 20:51:41 GMT

When the object is retrieved, part of the data is replaced at the provided starting offset (green fox is replaced with brown
cat) and the final value is: The quick brown cat jumps over the lazy dog and cat.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51

The quick brown cat jumps over the lazy dog and cat.

Note that when you overwrite existing parts of an object, the size and numbers of the new parts is added to the size and
numbers of the existing parts you overwrote. For example, in a bucket that has one part that is 20 KB in size, you overwrite
5 KB. When you query the bucket using GET /object/billing/buckets/{namespace}/{bucketName}/info, the
output will show total_mpu_size = 25 KB (not 20 KB) and total_mpu_parts = 2 (not 1) .

Appending data to an object

You can use ECS extensions to the S3 protocol to append data to an object.

There may be cases where you append to an object, but determining the exact byte offset is not efficient or useful. For this
scenario, ECS provides the ability to append data to the object without specifying an offset (the correct offset is returned to
you in the response). For example, in order to append lines a log file, on Amazon or other S3 compatible platforms, you must
send the full log file again.

A Range header with the special value bytes=-1- can be used to append data to an object. In this way, the object can be
extended without knowing the existing object size. The format is: Range: bytes=-1-
A sample request showing appending to an existing object using a Range value of bytes=-1- is shown in the following
example. Here the value and cat is sent in the request.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 12 Mar 2018 20:46:01 GMT

When the object is retrieved, and cat has been appended, and you can see the full value: The quick green fox jumps
over the lazy dog and cat.

GET /bucket1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:56 -0000
x-emc-namespace: emc

S3 31

Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51

The quick green fox jumps over the lazy dog and cat.

Reading multiple byte ranges within an object

You can use ECS extensions to the S3 protocol to read multiple byte ranges within an object.

Reading multiple parts of an object can be very useful in many cases. For example, to get several video parts. On Amazon or
other S3 compatible platforms, it is necessary to send a different request for each part.

To read two specific byte ranges within the object that is named object1, you issue the following GET request for Range:
bytes==4-8,41-44. The read response is words quick and lazy.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 206 Partial Content
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
Content-Length: 230

--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Retention

The ECS S3 head supports retention of objects to prevent them being deleted or modified for a specified period. The ECS S3 is
an ECS extension and is not available in the standard S3 API.

Retention can be set in the following ways:

Retention period
on object

Stores a retention period with the object. The retention period is set using an x-emc-retention-
period header on the object.

NOTE: The objects retention period can be extended. See Extending retention period on objects for

more information.

Retention policy
on object

A retention policy can be set on the object and the period that is associated with the policy can be set
for the namespace. The retention policy enables the retention period for a group of objects to be set to
the same value using a policy and can be changed for all objects by changing the policy. The use of a
policy provides much more flexibility than applying the retention period to an object. In addition, multiple
retention policies can be set for a namespace to allow different groups of objects to have different
retention periods.

32 S3

When applying a retention policy to an object using a x-emc-retention-policy header on the
object, the policy retention period must be set. The ECS administrator must set the policy retention
period from the ECS Portal or using the ECS Management REST API.

Retention period
on bucket

A retention period that is stored against a bucket sets a retention period. The retention period is set for all
objects with the object level retention period or policy that is used to provide an object-specific setting,
where a longer retention is required. The retention period is set using an x-emc-retention-period
header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket retention period or the object period is used to
determine whether the operation can be performed. The object period is set directly on the object or using the object retention
policy.

S3 buckets can also be created from the ECS Management REST API or from the ECS Portal and the retention period for a
bucket can be set from there.

Extending retention period on objects

ECS allows you to extend the retention period for the objects that are under retention.

To extend the object retention period, add a value to the x-emc-retention-period header. For example, a value of -1
implies infinitive retention period.

Limitations

● It is possible to extend the object retention period by changing the retention_class values in the namespace or in
the bucket. The modified retention period applies to all the objects in the bucket or to all the objects that are using the
retention_class defined in namespace. It is not possible to extend an individual object retention period.

● As to extend the retention period, namespace should have retention_class with some period value, buckets should
have retention-period, and objects should have retention-period and retention_class as defined in the
namespace.

NOTE: When modifying the retention value of an object, the new value is added to the object creation time. If the retention

period value is greater than the current time, the operation will be blocked.

Table 17. S3 API to extend the object retention period

Action Request Permission Response

Update retention period

PUT /
<bucket>/<object-
key>?retentionUpdate
x-emc-retention-
period:<seconds>

Example: /root/
s3curl.pl --id=<id>
-- -X PUT "http://
$ip:9020/bucket/
key1?
retentionUpdate" -H
'x-emc-retention-
period:3000'

NOTE:

● New retention period
value can only be
increased that is, it
can be the same as
the current or greater
value.

s3:PutObject 200 No content

S3 33

Table 17. S3 API to extend the object retention period

Action Request Permission Response

● If the new
retention period
value is -1, infinite
retention applies on
that object. For
example: -H 'x-
emc-retention-
period:-1'

File system enabled

This topic explains about File System (FS) enablement feature.

S3 buckets can be File System (FS) enabled so that the files that are written using the S3 protocol can be read using the file
protocols, such as Network File system (NFS), and the opposite way.

NOTE: Only the objects that are created in the file system enabled buckets, inherit group permissions from the bucket

settings if those permissions are not specified.

Enabling FS access

You can enable FS access using the x-emc-file-system-access-enabled header when creating a bucket using the S3
protocol. File system access can also be enabled when creating a bucket from the ECS Portal (or using the ECS Management
REST API).

Limitation on FS support

When a bucket is FS enabled S3 life cycle management cannot be enabled.

Cross-head support for FS

Cross-head support is accessing objects that are written using one protocol using a different, ECS-supported protocol. Objects
written using the S3 head can be read and written using NFS file system protocols.

An important aspect of cross-head support is how object and file permissions translate between protocols and for file system
access how user and group concepts translate between object and file protocols.

You can find more information about the cross-head support with file systems in the ECS Administration Guide which is available
from the https://www.dell.com/support/.

NFS WORM (Write Once, Read Many)

NFS data become Write Once Read Many (WORM) compliant when autocommit is implemented on it.

In detail, creating files through NFS is a multi step process. To write to a new file, NFS client first sends the CREATE request
with no payload to NFS server. After receiving a response, the server issues a WRITE request. It is a problem for FS enabled
buckets under retention as the file created with 0 bytes blocks any writes to it. Due to this reason, until ECS 3.3, retention on
FS enabled bucket makes the whole mounted file-system read-only. There is no End of File (EOF) concept in NFS. Setting a
retention for files, on the FS enabled buckets, after writing to them does not work as expected.

To remove the constraints that are placed on NFS files in a retention enabled bucket, the autocommit period is implemented
on NFS data. For this reason, it is decided to introduce the autocommit period during which certain types of updates (for now
identified as writes, Acl updates and deletes that are required for rsync, and rename that is required for Vim editor) are allowed,
which removes the retention constraints for that period alone.

NOTE:

34 S3

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

● The autocommit and the Atmos retention start delay are the same. See Retention start delay window.

● Autocommit period is a bucket property like retention period.

● Autocommit period is:

○ Applicable only for the file system enabled buckets with retention period

○ Applicable to the buckets in noncompliant namespace

○ Applies to only requests from NFS and Atmos

Seal file

The seal file functionality helps to commit the file to WORM state when the file is written ignoring the remaining autocommit
period. The seal function is performed through the command: chmod ugo-w <file> on the file.

NOTE: The seal functionality does not have any effect outside the retention period.

High-level overview

Table 18. Autocommit terms

Term Description

Autocommit period Time interval relative to the object's last modified time during which certain retention
constraints (example: file modifications, file deletions, and so on) are not applied. It does not
have any effect outside of the retention period.

Retention Start Delay Atmos head uses the start delay to indicate the autocommit period.

The following diagram provides an overview of the autocommit period behavior.

Autocommit configuration

The autocommit period can be set from the user interface or bucket REST API or S3 head or Atmos subtenant API.

User Interface

The user interface has the following support during bucket create and edit:
● When the File System is not enabled, no autocommit option is displayed.
● When the File System is enabled /no retention value that is specified, autocommit is displayed but disabled.
● When the File System is enabled/retention value selected/autocommit is displayed and enabled for selection.

NOTE: Maximum autocommit period is limited to the smaller of the Bucket Retention period or the default maximum period

of one day.

S3 35

REST API

Create bucket REST API is modified with the new header, x-emc-autocommit-period.

lglou063:~ # curl -i -k -T /tmp/bucket -X POST https://10.247.99.11:4443/object/bucket
-H "$token" -H "Content-Type: application/xml" -v

The contents of /tmp/bucket
<object_bucket_create>
 <name>bucket2</name>
 <namespace>s3</namespace>
 <filesystem_enabled>true</filesystem_enabled>
 <autocommit_period>300</autocommit_period>
 <retention>1500</retention>
</object_bucket_create>

S3 head

Bucket creation

Bucket creation flow through s3 head can make use of optional request header, x-emc-auto-commit-period:seconds to
set the autocommit period. The following checks are made in this flow:

● Allow only positive integers
● Settable only for file system buckets
● Settable only when the retention value is present

./s3curl.pl --ord --id=naveen --key=+1Zh4YC2r2puuUaj3Lbnj3u0G9qgPRj0RIWJhPxH --
createbucket -- -H 'x-emc-autocommit-period:600' -H 'x-emc-file-system-access-
enabled:true' -H 'x-emc-namespace:ns1' http://10.249.245.187:9020/bucket5 -v

Atmos

Atmos creates a subtenant request header, x-emc-retention-start-delay, captures the autocommit interval.

./atmoscurl.pl -user USER1 -action PUT -pmode TID -path / -header "x-emc-retention-
period:300" -header "x-emc-retention-start-delay:120" -include

Behavior of file operations

Table 19. Behavior of file operations

File Operation Expected within autocommit
period

Expected within retention period (after
autocommit period)

Change permission of file Allowed Denied

Change ownership of file Allowed Denied

Write to existing file Allowed Denied

Create empty file Allowed Allowed

Create non-empty file Allowed Denied

Remove file Allowed Denied

Move file Allowed Denied

Rename file Allowed Denied

Make dir Allowed Allowed

Remove directory Denied Denied

Move directory Denied Denied

Rename directory Denied Denied

36 S3

Table 19. Behavior of file operations (continued)

File Operation Expected within autocommit
period

Expected within retention period (after
autocommit period)

Change permission on directory Denied Denied

list Allowed Allowed

Read file Allowed Allowed

Truncate file Allowed Denied

Copy of local read-only files to
NFS share

Allowed Allowed

Copy of read-only files from NFS
share to NFS share

Allowed Allowed

Change atime/mtime of file/
directory

Allowed Denied

S3A support

The AWS S3A client is a connector for AWS S3.

S3A client enables you to run Hadoop MapReduce or Spark jobs with ECS S3. For information about Hadoop S3A, see Hadoop
S3A for ECS.

NOTE:

● ECS does not enable you to run S3A client on FS enabled buckets.

● S3A support is available on Hadoop 2.7 or later version.

Geo-replication status

The ECS S3 head supports Geo replication status of an object with replicationInfo. It API retrieves Geo replication status of an
object using replicationInfo. This automates their capacity management operations, enable site reliability operations and ensures
that the critical date is not deleted accidently.

Retrieves Geo replication status of an object by API to confirm that the object has been successfully replicated.

Request:
GET /bucket/key?replicationInfo

Response:

<ObjectReplicationInfo xmlns="http://s3.amazonaws.com/doc/
2006-03001/"
 <IndexReplicated>false</IndexReplicated>
 <ReplicatedDataPercentage>64.0</ReplicatedDataPercentage>
</ObjectReplicationInfo>

Configuring throttle limit during bucket creation

ECS allows you to configure throttle limit to control the amount of HTTP requests on a specific resource over a given period.

To limit PUT requests on every bucket in the system per second, configure the Configuration Framework (CF) variables as
below:

com.emc.ecs.common.request.throttle.enabled = true
com.emc.ecs.common.request.throttle.limit = <any postive integer value>
com.emc.ecs.common.request.throttle.type = resource:bucket
com.emc.ecs.common.request.throttle.method = PUT

S3 37

NOTE: The throttle limit value must be a positive integer value. That is any value between <1 - java long range upper limit>

is valid.

S3 Select

S3 select uses simple SQL expressions to retrieve a subset of data from an object, which enables your application to retrieve
only the required data. This feature may improve your application performance.

Limitations

S3 Select has the following limitations:

● By default, S3 select is enabled for the 192 GB memory profiles and disabled for the 64 GB profiles.
● Only CSV, JSON, and parquet file formats are supported.
● S3 Select supports only the SELECT SQL command.

S3 Select API

ECS supports the SelectObjectContent API to retrieve a subset of data from an object using SQL expressions.

API Method Request headers Response

SelectObjectConte
nt

POST
x-amz-server-side-encryption-
customer-algorithm

x-amz-server-side-encryption-
customer-key

x-amz-server-side-encryption-
customer-key-MD5

● For all the success
scenarios, the system
returns an Http
response : 200
OK and obtains the
requested subset.

● For all the error
scenarios, the system
returns proper error
messages along with
error codes.

Metadata Search
The ECS S3-compatible API provides a metadata search extension. The search enables objects within a bucket to be indexed
based on their metadata, and for the metadata index to be queried to find objects and their associated data.

Metadata can be associated with objects using the ECS S3 API. If you know the identity of an object, you can read an object's
metadata. Without the ECS metadata search feature, it is not possible to find an object using its metadata without iterating
through the set of object in a bucket.

Metadata can be either user metadata or system metadata. System metadata is defined and automatically written to objects by
ECS, clients write the user metadata with reference to the user requirements. Both system and user metadata can be indexed
and used as the basis for metadata searches. The number of metadata values that can be indexed is limited to 30 and must be
defined when the bucket is created.

NOTE: In the case of small objects (100KB and below), the ingest rate for data slightly reduces on increasing the number

of index keys. Performance testing data showing the impact of using metadata indexes for smaller objects is available in the

ECS Performance white paper.

When querying objects based on their indexed metadata, the objects that match the query and the values of their indexed
metadata are returned. You can also choose to return all of the system and/or user metadata that is associated with the
returned objects. In addition to system metadata, objects also have attributes which can be returned as part of metadata search
results. The system metadata values that are available and can be indexed, and the metadata values that can optionally be
returned with search query results, are listed ECS system metadata and optional attributes.

The following topics cover the steps involves in setting up and using the metadata search feature:

● Assign metadata index values to a bucket

38 S3

● Assign metatdata to objects using S3 protocol
● Use metadata search queries

Assign metadata index values to a bucket

You can set metadata index values on a bucket using the ECS Portal or ECS Management REST API, or using the S3 protocol.
The index values must reflect the name of the metadata that they are indexing and can be based on system metadata or user
metadata.

A list of the available system metadata is provided in ECS System metadata and optional attributes.

Index values are set when a bucket is created. You can disable the use of indexing on a bucket, but you cannot change or delete
individual index values.

Setting index values using the Portal

You can set index values using the portal

The Manage > Bucket page enables buckets to be created and for index values to be assigned during the creation process.

Setting index values using the ECS Management REST API

You can set index values using the ECS Management REST API

Table 20. ECS Management REST API methods

API Path Description

GET /object/bucket/searchmetadata Lists the names of all system metadata keys available for assigning to a new bucket.

POST /object/bucket Assigns the metadata index names that are indexed for the specified bucket. The
index names are supplied in the method payload.

GET /object/bucket Gets a list of buckets. The bucket information for each bucket shows the metadata
search details.

GET /object/bucket/{bucketname}/info Gets the bucket details for the selected bucket. The information for the bucket
includes the metadata search details.

DELETE /object/bucket/{bucketname}/
searchmetadata

Stops indexing using the metadata keys.

Example: Get the list of available metadata names

The following example gets the entire list of metadata names available for indexing and that can be returned in queries.

s3curl.pl --id myuser -- http://{host}:9020/?searchmetadata

The results of the query are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <IndexableKeys>
 <Key>
 <Name>LastModified</Name>
 <Datatype>datetime</Datatype>
 </Key>
 <Key>
 <Name>Owner</Name>
 <Datatype>string</Datatype>
 </Key>
 <Key>
 <Name>Size</Name>
 <Datatype>integer</Datatype>
 </Key>
 <Key>

S3 39

 <Name>CreateTime</Name>
 <Datatype>datetime</Datatype>
 </Key>
 <Key>
 <Name>ObjectName</Name>
 <Datatype>string</Datatype>
 </Key>
 </IndexableKeys>
 <OptionalAttributes>
 <Attribute>
 <Name>ContentType</Name>
 <Datatype>string</Datatype>
 </Attribute>
 <Attribute>
 <Name>Expiration</Name>
 <Datatype>datetime</Datatype>
 </Attribute>
 <Attribute>
 <Name>ContentEncoding</Name>
 <Datatype>string</Datatype>
 </Attribute>
 <Attribute>
 <Name>Expires</Name>
 <Datatype>datetime</Datatype>
 </Attribute>
 <Attribute>
 <Name>Retention</Name>
 <Datatype>integer</Datatype>
 </Attribute>
 </OptionalAttributes>
</MetadataSearchList>

Example: Get the list of keys being indexed for a bucket

The following example gets the list of metadata keys currently being indexed for a bucket.

s3curl.pl --id myuser -- http://{host}:9020/mybucket/?searchmetadata

The results of this example are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <MetadataSearchEnabled>true</MetadataSearchEnabled>
 <IndexableKeys>
 <Key>
 <Name>Size</Name>
 <Datatype>integer</Datatype>
 </Key>
 <Key>
 <Name>x-amz-meta-DAT</Name>
 <Datatype>datetime</Datatype>
 </Key>
 </IndexableKeys>
</MetadataSearchList>

Setting values using the S3 API

The S3 API provides methods for working with indexes that are listed in the following table and links are provided to the API
reference.

NOTE: The following characters are not accepted in S3 metadata key in ECS 3.4 and later versions: quotation marks (""),

parentheses (()), comma (,), Forward slash (/), at (@), angle brackets (<>), equal to (=), and question mark (?).

Table 21. ECS Management REST API methods

API Path Description

GET /?searchmetadata Lists the names of all system metadata available for indexing on new buckets.

40 S3

Table 21. ECS Management REST API methods (continued)

API Path Description

PUT /{bucket} -H x-emc-metadata-
search: {name[;datatype],...}

Creates a bucket with the search metadata key that is indicated in the header.
NOTE: A datatype must be associated with a user metadata key, but is not
necessary for a system metadata key.

GET /{bucket}/?searchmetadata Gets the list of metadata keys that are currently being indexed for the bucket.

Example

The following example shows how to create a bucket with metadata indexes for three system metadata keys and two user
metadata keys.

s3curl.pl --id myuser --createbucket -- http://{host}:9020/mybucket
-H "x-emc-metadata-search:Size,CreateTime,LastModified,x-amz-meta-STR;String,x-amz-meta-
INT;Integer"

NOTE: When adding an object with x-amz-meta-, values containing special characters do not have to be url-encoded.

Using encryption with metadata search

When encryption is used on a bucket, object metadata keys that are indexed are stored in non-encrypted form, so it is always
possible to perform metadata searches on encrypted buckets.

Where the encryption was performed using system-supplied keys, the object metadata returned by a query will be decrypted
and shown in text form. However, if the data was encrypted using a user-supplied encryption key, metadata that is not indexed
will still be encrypted when returned by a metadata search query as the user encrypted keys cannot be provided via the query.

Assign metadata to objects using the S3 protocol

End users can assign user metadata to objects using the x-amz-meta- header. The value assigned can be any text string and
is case sensitive, but the metadata names are case insensitive, so x-amz-meta-FOO, x-amz-meta-foo are referring to the
same field foo.

NOTE: When defining the fields to index and searching, ensure that you use all lowercase.

When the metadata is indexed so that it can be used as the basis of object searches (the metadata search feature), a datatype
is assigned to the data. When writing metadata to objects, clients should write data in the appropriate format so that it can be
used correctly in searches.

The datatypes are:

String If the search index term is marked as text, the metadata string is treated as a string in all search
comparisons.

Integer If the search index term is marked as integer, the metadata string is converted to an integer in search
comparisons.

Decimal If a search index term is marked as decimal, the metadata string is converted to a decimal value so that
the "." character is treated as a decimal point.

Datetime If the search index term is marked as datetime, the metadata string is treated as a date time with the
expected format: yyyy-MM-ddTHH:mm:ssZ If you want the string to be treated as datetime, you need
to use the format yyyy-MM-ddTHH:mm:ssZ when specifying the metadata.

S3 41

Example

The example below uses the S3 API to upload an object and two user metadata values on the object.

s3curl.pl --id myuser --put myfile -- http://{host}:9020/mybucket/file4 -i -H x-amz-meta-
STR:String4 -H x-amz-meta-INT:407

Use metadata search queries

The metadata search feature provides a rich query language that enables objects that have indexed metadata to be searched.

Table 22. API Syntax

API Syntax Response Body

GET /{bucket}/?
query={expression}
&attributes={fieldname,
…}
&sorted={selector}
&include_older_version=
{tru
e|false}
&max-keys=(num_keys)
&marker=(marker value)

NOTE: Prefix capability is
added to the metadata
search. See Prefix capability in
metadata search.

<BucketQueryResult xmlns:ns2="http://
s3.amazonaws.com/doc/2006-03-01/">
 <Name>mybucket</Name>
 <Marker/>
 <IsTruncated>false</IsTruncated>
 <MaxKeys>0</MaxKeys>
 <ObjectMatches>
 <object>
 <objectName>file4</objectName>

<objectId>09998027b1b7fbb21f50e13fabb48
1a237ba2f60f352d437c8da3c7c1c8d7589</
objectId>
 <versionId>0</versionId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778025</
value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778025</
value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>
 <value>407</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>String4</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>
 <object
 ...
 </object>

42 S3

Table 22. API Syntax

API Syntax Response Body

 </ObjectMatches>
</BucketQueryResult>

The expression keywords and their meanings are listed below:

expression An expression in the form:

[(]{condition1}[%20[and/or]%20{condition2}][)][%20[and/or]%20…]

Where "condition" is a metadata key name filter in the form:

{selector} {operator}
{argument},

For example:

LastModified > 2018-03-01T11:22:00Z

selector A searchable key name associated with the bucket.

operator An operator. One of: ==, >, <, <=, >=

argument A value that the selector is tested against.

attributes=[field
name,...]

Specifies any optional object attributes that should be included in the report. Attribute values will be
included in the report where that attribute is present on the object. The optional attribute values
comprise:
● ContentEncoding
● ContentType
● Retention
● Expiration
● Expires
In addition, it is possible to return the non-indexed metadata associated with objects that are returned by
the search query. The following:

ALL Lists both system and user metadata associated with the returned objects.

ALL_SMD Lists the system metadata associated with the returned objects.

ALL_UMD Lists the user metadata associated with the returned objects.

sorted=[selector] Specifies one searchable key name associated with the bucket. The key name must be a key that appears
in the expression. In the absence of &sorted=keyname, the output will be sorted according to the first key
name that appears in the query expression.

NOTE: If "or" operators are used in the expression, the sort order is indeterminate.

include-older-
versions=[true|
false]

When S3 versioning is enabled on a bucket, setting this to true will return current and older versions of
objects that match the expression. Default is false.

max-keys The maximum number of objects that match the query that should be returned. If there are more objects
than the max-keys, a marker will be returned that can be used to retrieve more matches.

marker The marker that was returned by a previous query and that indicates the point from which query matches
should be returned.

S3 43

Datetime queries

Datetime values in user metadata are specified in ISO-8601 format yyyy-MM-dd'T'HH:mm:ssZ and are persisted by ECS in
that format. Metadata queries also use this format. However, ECS persists datetime values for system metadata as epoch time,
the number of milliseconds since the beginning of 1970.

When a query returns results, it returns the datetime format persisted by ECS. An example of the two formats is shown below.

User metadata
upload header
example:

-H x-amz-meta-Foo:2018-03-06T12:00:00Z

User and System
query expression
format:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-
Foo==2018-03-06T12:00:00Z

Query results
fragment -
system metadata

<key>createtime</key> <value>1449081777620</value>

Query results
fragment - user
metadata

<key>x-amz-meta-Foo</key> <value>2018-03-06T12:00:00Z</value>

Using markers and max-keys to paginate results

You can specify the maximum number of objects that will be returned by a query using the max-keys query parameter.

The example below specified a maximum number of objects as 3.

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-
keys=3

Where a query matches more objects than the max-keys that has been specified, a marker will also be returned that can be used
to return the next page objects that match the query but were not returned.

The query below specifies a marker that has been retrieved from a previous query:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-
keys=3&marker=rO0ABXNyAD...

When the returned objects are the final page of objects, the IsTruncated tag value is returned as false. Else, the
IsTruncated tag value is returned as True.

NOTE: Only if the IsTruncated tag value is returned as True, the NextMarker tag appears.

Using Partial Results

In large bucket indexes, complex queries can have a long run time. If the search cannot accumulate a full page (max-keys) of
results within the timeout, you can use the `allow-partial-results` parameter to let ECS return a partial page of results.

For example:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-
keys=1000&allow-partial-results=true

indicates that you would like 1000 keys in the response, but ECS may return less than 1000 if it cannot find 1000 matching
objects within the default timeout window. The partial result, like a normal page result, has the IsTruncated flag set to true
with a token in the NextMarker field to continue the search.

44 S3

Using special characters in queries

You can use special characters in queries

The use of url-encoding is required to ensure that special characters are received correctly by the ECS REST service and
quoting can be required to ensure that when ECS parses the query it does not mis-interpret symbols. For example:

● When querying on x-amz-meta values, special characters must be url-encoded. For example: when using "%" (ASCII 25 hex),
or "/" (ASCII 2F), they must be encoded as %25 and 2F, respectively.

● When querying on x-amz-meta values that have SQL-reserved characters the reserved characters must be escaped. This is
to ensure that the SQL parser used by ECS does not consider them operators. For example: 'ab < cd' (that is, make sure
a pair of quotes is passed into the service so that the SQL parser used by ECS does not consider them operators). The
SQL-reserved characters include comparison operators (=, <, >, +, -, !, ~) and syntax separators (comma, semicolon).

Different ways of quoting are possible and depend on the client being used. An example for Unix command-line tools like
S3curl.pl, would be:

?query="'ab+cd<ed;ef'"

In this case, the search value is single-quoted and that is wrapped in double quotes.

Prefix capability in metadata search

You can use prefix capability in metadata search

S3 API metadata search supports the prefix and delimiter parameters. It follows the standard S3 definition of these parameters.
Prefix capability effectively transforms every single metadata query into a multi query request with AND operation between
prefix and the query string. In other words, it is possible to combine the AND and OR predicates in the queries.

S3 API metadata is modified to support prefix and delimiter parameters as described below:

 GET /bucketName/?prefix={prefix}&delimiter={delimiter}&query={queryString}

Limitations

● A prefix is always applied before the actual query.
● Custom sorting is not supported with prefixes. If sorting is specified together with a prefix, the API returns 400 Bad

Request.
● Objects are returned in lexicographical order.
● Using ObjectName in a query string together with a prefix is not allowed. It creates ambiguity as both filter objects based

on name. If both are specified, the API returns 400 Bad Request.

Metadata search example

You can use metadata search example

The example below uses the S3 API to search a bucket for a particular object size and user metadata value match.

NOTE: Some REST clients may require that you encode "spaces" with url code %20.

s3curl.pl --id myuser
-- "http://{host}:9020.mybucket?query=Size>1000%20and%20x-amz-meta-STR>=String4

The result shows three objects that match the search.

<BucketQueryResult xmlns:ns2="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>mybucket</Name>
 <Marker/>
 <IsTruncated>false</IsTruncated>
 <MaxKeys>0</MaxKeys>
 <ObjectMatches>
 <object>

S3 45

 <objectName>file4</objectName>
 <objectId>09998027b1b7fbb21f50e13fabb481a237ba2f60f352d437c8da3c7c1c8d7589</
objectId>
 <versionId>0</versionId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778025</value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778025</value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>
 <value>407</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>String4</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>
 <object>
 <objectName>file5</objectName>
 <objectId>1ad87d86ef558ca0620a26855662da1030f7d9ff1d4bbc7c2ffdfe29943b9150</
objectId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778396</value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778396</value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>
 <value>507</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>Sring5</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>

46 S3

 </ObjectMatches>
</BucketQueryResult>

Using Metadata Search from the ECS Java SDK

In the 3.0 SDK, there is an option to exclude the "search" and "searchmetadata" parameters from the signature if you are
connecting to a pre-3.0 ECS. These parameters were not part of the signature computation in ECS 2.x, but are now part of the
computation to enhance security.

Table 23. SDK Support for Metadata Search

- ECS Version

2.x 3.x

SDK 2.x Yes No

SDK 3.x Yes Yes

ECS system metadata and optional attributes

System metadata is automatically associated with each object stored in the object store. Some system metadata is always
populated and can be used as index keys, other metadata is not always populated but, where present, can be returned with
metadata search query results.

System metadata

Table 24. System Metadata

Name (Alias) Type Description

ObjectName string Name of the object.

Owner string Identity of the owner of the object.

Size integer Size of the object.

CreateTime datetime Time at which the object was created.

LastModified datetime Time and date at which the object was last modified.
NOTE: Modification supported by ECS S3 byte-range update
extensions, not by pure S3 API.

Optional metadata attributes

Optional system metadata attributes may or may not be populated for an object, but can be optionally returned along with
search query results. The optional system metadata attributes are listed in the table below.

Table 25. Optional metadata attributes

Name (Alias) Type

ContentType string

Expiration datetime

ContentEncoding string

Expires datetime

Retention integer

S3 47

Metadata search with Tokenization

Tokenization allows you to use metadata search to search for objects that have a specific metadata value within an array of
metadata values.

Tokenization is enabled using the x-emc-metadata-search-tokens: true header. When creating a bucket, you can
specify whether the metadata value should follow the existing method (without tokenization) or the new method (with
tokenization). However, both methods cannot be used on the same bucket.

Methods Description

Existing method without tokenization In this method, the metadata value is interpreted as a single value. For example, in
the x-amz-meta-countries= [france,uk] command, the france,uk value is
considered as a single value.

New method with tokenization In this method, each element of a metadata value is searchable. For example, in
the x-amz-meta-countries= [france,uk] command, the france,uk value is
considered as two values separated with the delimiter.

Limitations

Tokenization has the following limitations:

Limitation Description

Size of user metadata User-defined metadata is limited to 2 KB in size for AWS. For ECS 2 KB is a guideline
only. The size of user-defined metadata is the sum of the number of bytes in the UTF-8
encoding of each key and value.

Note that metadata will not work on other platforms such as AWS.

Permitted delimiters for
tokenization

The special characters that can be used to identify individual values in the metadata value
are "[", "]", and ",".

Backward compatibility Token-based search is not available for existing buckets.

S3 and Swift Interoperability
S3 and Swift protocols can interoperate so that S3 applications can access objects in Swift buckets and Swift applications can
access objects in S3 buckets.

When considering whether objects created using the S3 head is accessible using the Swift head, and conversely, you should first
consider whether users can access the bucket (called a container in Swift). A bucket is assigned a bucket type (S3 or Swift, for
example) based on the ECS head that created it. The object users must have appropriate permissions for the type of bucket, for
an application to access both Swift and S3 buckets. Consider giving the permissions, because of the way in which permissions
are determined for Swift and S3 buckets is different.

NOTE: S3 and Swift interoperability is not compatible with the use of bucket policies. Bucket policies apply only to bucket

access using the S3 head and are not enforced when accessing a bucket using the Swift API.

In ECS, the same object user name can be given both S3 and Swift credentials. So, as far as ECS is concerned, a user who is
called john who authenticates as a Swift user, can then access any S3 resources that john is allowed to access.

Access to a resource is determined either by being the bucket owner, or by being assigned permission on the bucket using ACLs.
When a S3 user creates a bucket, for example, that bucket is owned by the S3 user name. That user has full permissions on the
bucket, and a Swift user with the same name similarly has full permissions on the bucket.

Where you want users other than the owner to be able to access a bucket, permissions can be assigned using ACLs. Access
to Swift containers can be granted using group ACLs (Custom Group ACLs, in ECS), and the Swift head performs a check on
group membership before checking group ACL permissions. Swift containers add the admin group implicitly, and any user that
is a member of the admin group (an admin user) can access any other admin user’s containers. Only admin users have
permissions to create, delete, and list-all containers. The admin user’s permissions only apply to the namespace to which the
user belongs. Access to S3 buckets depends on user permissions (User ACLs), not group permissions. To determine access to a
bucket, the S3 head checks if the user has ACL permissions on the bucket. See the illustration in the following illustration.

48 S3

S3 HEAD SWIFT HEAD

S3 APPLICATION

S3 BUCKET ACCESS SWIFT BUCKET ACCESS

GROUP ACLUSER ACL

SWIFT
APPLICATION

ECS OBJECT
USER

S3 KEY

SWIFT PASSWORD
SWIFT GROUP

Swift user access
to Swift containerS3 user access

to S3 bucket

check Swift
group ACL
permissions

Swift user access
to S3 bucket

S3 user access
to Swift container

check S3
user ACL

CROSSHEAD

Figure 1. S3 user access checks

Swift uses groups to enable access to resources, for an S3 user to be able to access a Swift container. The S3 user must be
assigned to a Swift group, either the admin group, or a group that has been given Custom Group ACLs on the container.

In summary, one of the following conditions should be met for access to S3 buckets:

● The Swift or S3 user must be the bucket owner.
● The Swift or S3 user must have been added to the user ACL for the bucket.

One of the following conditions should be met for access to Swift containers:

● The S3 or Swift user must be the container owner.
● The S3 user must also be a Swift user and must have been added to a Swift group. The Swift group must be added as a

custom group, unless the user is a member of the Swift admin group, which is added automatically to the custom groups.

● The Swift user must have been added to a group ACL for the container, or the user must be in the Swift admin group,
which is added automatically to the custom groups.

NOTE:

Reading a Swift DLO object through the S3 API does not work. The request follows a generic code path for the read

without acknowledging the presence of the X-Object-Manifest metadata key, to stitch the object back from its

individual paths.

NOTE:

For an MPU upload, the Swift list parts operation fails since it does not understand the '?uploadId=<uploadId>'

sub-resource.

Create and manage secret keys
Users of the ECS object services require a secret key in order to authenticate with a service.

Secret keys can be created and made available to the object user in the following ways:

S3 49

● An administrator creates a key and distributes to the object user (Create a key for an object user).
● A domain user creates an object user account by creating a new secret key using the self-service API provided by the

self-service API (Create an S3 secrte key: self-service).

It is possible to have two secret keys for a user. When changing (sometimes referred to as "rolling over") a secret key, an
expiration time in minutes can be set for the old key. During the expiration interval, both keys are accepted for requests. This
provides a grace period where an application can be updated to use the new key.

Create a key for an object user

ECS Management users can create a secret key for an object user.
● Generate a secret key from the ECS Portal
● Create an S3 secret key using the ECS Management REST API

For more information about ECS users, see the ECS Administration Guide which is available from the https://www.dell.com/
support/.

Generate a secret key from the ECS Portal

You can generate a secret key at the ECS Portal.

● You must be an ECS System Administrator or Namespace Administrator.

If you are a System Administrator, you can create a secret key for an object user belonging to any namespace. If you are a
Namespace Administrator, you can create a secret key for an object user who belongs to your namespace.

1. In the ECS Portal, select the Manage > Users page.

2. In the Object Users table, select New Object User or select Edit for an existing user to which you want to assign a secret
key.

3. For S3, select Generate & Add Password.

To change a secret key for a user, you can generate a second secret key and specify when the first key expires.

4. Copy the generated key and email to the object user.

Create an S3 secret key using the ECS Management REST API

The ECS Management REST API enables a management user to create a secret key for an S3 object user.

Table 26. API Path

API Path Description

/object/user-secret-keys/
{uid}

API to allow secret keys to be assigned to object users and enable secret keys to be
managed. A Namespace Administrator can create keys for users in their namespace.
A System Administrator can assign keys to users in any namespace. To change a
key, a second key can be assigned and the time at which the first key expires can
be specified.

You can find out more information about the API call in the ECS API Reference.

Create an S3 secret key: self-service

The ECS Management REST API provides the ability to allow authenticated domain users to request a secret key to enable them
to access the object store.

The ECS API Reference can be used where you want to create a custom client to perform certain ECS management operations.
For simple operations domain users can use curl or a browser-based HTTP client to execute the API to create a secret key.

When a user runs the object/secret-keys API, ECS automatically creates an object user and assigns a secret key.

50 S3

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Table 27. Object Secret Keys

API Path Description

/object/secret-keys API to allow S3 client users to create a new secret key that enables them to
access objects and buckets within their namespace. This is also referred to as a
self-service API.

The payload for the /object/secret-keys can include an optional existing key expiry time.

<secret_key_create_param>
 <existing_key_expiry_time_mins></existing_key_expiry_time_mins>
 </secret_key_create_param>

If you are creating a secret key for the first time, you can omit the existing_key_expiry_time_mins parameter and a call would
be:

POST object/secret-keys

Request body
 <?xml version="1.0" encoding="UTF-8"?>
 <secret_key_create_param/>

Response
 <user_secret_key>
 <secret_key>...</secret_key>
 <key_timestamp>...</key_timestamp>
 <link rel="..." href="..." />
 </user_secret_key>

Working with self-service keys

Examples provided here help you use the ECS Management REST API to create, read, and manage secret keys.

To perform operations with secret keys you must first authenticate with the Management API. The examples provided use the
curl tool.

● Log in as domain user
● Generate first key
● Generate second key
● Check keys
● Delete all secret keys

Log in as a domain user

You can log in as a domain user and obtain an authentication token that can be used to authenticate subsequent requests.

curl -ik -u user@mydomain.com:<Password> https://10.241.48.31:4443/login
HTTP/1.1 200 OK
Date: Mon, 05 Mar 2018 17:29:38 GMT
Content-Type: application/xml
Content-Length: 107
Connection: keep-alive
X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwNzQ4ODA1NTQDAC
51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
<user>tcas@corp.sean.com</user>
</loggedIn>

S3 51

Generate first key

You can generate a secret key.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d "{}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_key>
 <link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
 <secret_key>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret_key>
 <key_expiry_timestamp/>
 <key_timestamp>2018-03-05 17:39:13.813</key_timestamp>
</user_secret_key>

Generate second key

You can generate a second secret key and set the expiration for the first key.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwN
zQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d "{\"existing_key_expiry_time_mins\":
\"10\"}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_key>
 <link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
 <secret_key>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</secret_key>
 <key_expiry_timestamp/>
 <key_timestamp>2018-03-05 17:40:12.506</key_timestamp>
</user_secret_key>

Check keys

You can check the keys that you have been assigned. In this case, there are two keys with the first having an expiration
date/time.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8="
https://10.241.48.31:4443/object/secret-keys | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_keys>
 <secret_key_1>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret_key_1>
 <secret_key_2>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</secret_key_2>
 <key_expiry_timestamp_1>2018-03-05 17:50:12.369</key_expiry_timestamp_1>
 <key_expiry_timestamp_2/>
 <key_timestamp_1>2018-03-05 17:39:13.813</key_timestamp_1>
 <key_timestamp_2>2018-03-05 17:40:12.506</key_timestamp_2>
 <link rel="self" href="/object/secret-keys"/>
</user_secret_keys>

Delete all secret keys

If you need to delete your secret keys before regenerating them. You can use the following.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d "{}" https://10.241.48.31:4443/object/
secret-keys/deactivate

52 S3

Authenticating with the S3 service
The ECS S3 service enables authentication using Signature Version 2 and Signature Version 4. This topic identifies any ECS-
specific aspects of the authentication process.

Amazon S3 uses an authorization header that must be present in all requests to identify the user and provide a signature for the
request. The format of the authorization header differs between Signature Version 2 and Signature Version 4 authentication.

In order to create an authorization header, you need an AWS Access Key Id and a Secret Access Key. In ECS, the AWS Access
Key Id maps to the ECS user id (UID). An AWS Access Key ID has 20 characters (some S3 clients, such as the S3 Browser,
check this), but ECS data service does not have this limitation.

Authentication using Signature V2 and Signature V4 are introduced in:

● Authenticating using Signature V2
● Authenticating using Signature V4

The following notes apply:

● In the ECS object data service, the UID can be configured (through the ECS REST API or the ECS Portal with two secret
keys. The ECS data service tries to use the first secret key, and if the calculated signature does not match, it tries to use the
second secret key. If the second key fails, it rejects the request. When users add or change the secret key, they should wait
two minutes so that all data service nodes can be refreshed with the new secret key before using the new secret key.

● In the ECS data service, namespace is also taken into HMAC signature calculation.

Authenticating using Signature V2

The Authorization header when using Signature V2 looks like this:

Authorization: AWS <AWSAccessKeyId>:<Signature>

For example:

GET /photos/puppy.jpg
?AWSAccessKeyId=user11&Expires=1141889120&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D
HTTP/1.1
Host: myco.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authentication using Signature V2 is described in:

● http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Authenticating using Signature V4

The Authorization header when using Signature V4 looks like this:

Authorization: AWS4-HMAC-SHA256
Credential=user11/20130524/us/s3/aws4_request,
SignedHeaders=host;range;x-amz-date,
Signature=fe5f80f77d5fa3beca038a248ff027d0445342fe2855ddc963176630326f1024

The Credential component comprises your Access Key Id followed by the Credential Scope. The Credential Scope comprises
Date/Region/Service Name/Termination String. For ECS, the Service Name is always s3 and the Region can be any string.
When computing the signature, ECS uses the Region string passed by the client.

Authentication using Signature V4 is described in:

● http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html , and
● http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

An example of a PUT bucket request using Signature V4 is provided below:

PUT /bucket_demo HTTP/1.1
x-amz-date: 20160726T033659Z

S3 53

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

Authorization: AWS4-HMAC-
SHA256 Credential=user11/20160726/us/s3/aws4_request,SignedHeaders=host;x-amz-date;x-emc-
namespace,Signature=e75a150daa28a2b2f7ca24f6fd0e161cb58648a25121d3108f0af5c9451b09ce
x-emc-namespace: ns1
x-emc-rest-client: TRUE
x-amz-content-sha256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Content-Length: 0
Host: 10.247.195.130:9021
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.1 (java 1.5)

Response:

HTTP/1.1 200 OK
Date: Tue, 26 Jul 2016 03:37:00 GMT
Server: ViPR/1.0
x-amz-request-id: 0af7c382:156123ab861:4192:896
x-amz-id-2: 3e2b2280876d444d6c7215091692fb43b87d6ad95b970f48911d635729a8f7ff
Location: /bucket_demo_2016072603365969263
Content-Length: 0

Using s3curl with ECS
A modified version of s3curl is required for use with ECS.

When using ECS custom headers (x-emc), the signature element of the Authorization header must be constructed to
include the custom headers. In addition,

● When connecting to ECS 3.0 and later, the search and searchmetadata parameters are part of the signature
computation.

● When connecting to ECS 3.5.0.2 and later, the x-amz-date parameter is part of the signature computation.

You can obtain an ECS-specific version of s3curl that is modified to handle these conditions from the EMCECS Git Repository.

Use SDKs to access the S3 service
When developing applications that talk to the ECS S3 service, there are a number of SDKs that support your development
activity.

The ECS Community provides information about the various clients that are available and provides guidance on their use: ECS
Community: Developer Resources.

The following topics describe the use of the Amazon S3 SDK and the use of the ECS Java SDK.

● Using the Java Amazon SDK>
● Java SDK client for ECS

NOTE: If you want to make use of the ECS REST API Extensions, support for these extensions is provided in the ECS

Java SDK. If you do not need support for the ECS extensions, or you have existing applications that use it, you can use the

Amazon Java SDK.

NOTE: Compatibility of the ECS Java SDK with the metadata search extension is described in Using Metadata Search from

the ECS Java SDK.

Using the Java Amazon SDK

You can access ECS object storage using the Java S3 SDK.

By default the AmazonS3Client client object is coded to work directly against amazon.com. This section shows how to set up
the AmazonS3Client to work against ECS.

In order to create an instance of the AmazonS3Client object, you need to pass it credentials. This is achieved through creating
an AWSCredentials object and passing it the AWS Access Key (your ECS username) and your generated secret key for ECS.

54 S3

https://github.com/EMCECS/s3curl
https://community.emc.com/community/products/ecs#developer

The following code snippet shows how to set this up.

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));

By default the Amazon client attempts to contact Amazon WebServices. In order to override this behavior and contact ECS you
need to set a specific endpoint.

You can set the endpoint using the setEndpoint method. The protocol specified on the endpoint dictates whether the client
should be directed at the HTTP port (9020) or the HTTPS port (9021).

NOTE: If you intend to use the HTTPS port, the JDK of your application must be set up to validate the ECS certificate

successfully; otherwise the client will throw SSL verification errors and fail to connect.

In the snippet below, the client is being used to access ECS over HTTP:

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");

When using path-style addressing (ecs1.emc.com/mybucket), you will need to set the setPathStyleAccess option, as shown
below:

S3ClientOptions options = new S3ClientOptions();
options.setPathStyleAccess(true);

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");
client.setS3ClientOptions(options);

The following code shows how to list objects in a bucket.

ObjectListing objects = client.listObjects("mybucket");
for (S3ObjectSummary summary : objects.getObjectSummaries()) {
 System.out.println(summary.getKey()+ " "+summary.getOwner());
}

The CreateBucket operation differs from other operations in that it expects a region to be specified. Against S3 this would
indicate the data center in which the bucket should be created. However, ECS does not support regions. For this reason, when
calling the CreateBucket operation, we specify the standard region, which stops the AWS client from downloading the Amazon
Region configuration file from Amazon CloudFront.

client.createBucket("mybucket", "Standard");

The complete example for communicating with the ECS S3 data service, creating a bucket, and then manipulating an object is
provided below:

public class Test {
 public static String uid = "root";
 public static String secret = "KHBkaH0Xd7YKF43ZPFbWMBT9OP0vIcFAMkD/9dwj";
 public static String viprDataNode = "http://ecs.yourco.com:9020";

 public static String bucketName = "myBucket";
 public static File objectFile = new File("/photos/cat1.jpg");

 public static void main(String[] args) throws Exception {

 AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));

 S3ClientOptions options = new S3ClientOptions();
 options.setPathStyleAccess(true);

 AmazonS3Client client = new AmazonS3Client(credentials);
 client.setEndpoint(viprDataNode);
 client.setS3ClientOptions(options);

 client.createBucket(bucketName, "Standard");
 listObjects(client);

 client.putObject(bucketName, objectFile.getName(), objectFile);
 listObjects(client);

S3 55

 client.copyObject(bucketName,objectFile.getName(),bucketName, "copy-" +
objectFile.getName());
 listObjects(client);
 }

 public static void listObjects(AmazonS3Client client) {
 ObjectListing objects = client.listObjects(bucketName);
 for (S3ObjectSummary summary : objects.getObjectSummaries()) {
 System.out.println(summary.getKey()+ " "+summary.getOwner());
 }
 }
}

ECS S3 APIs compatible with AWS Java SDK

The below table lists the supported ECS S3 APIs that are compatible with AWS Java SDK.

NOTE:

● All these APIs are certified against AWS Java SDK version 1.11.769.

● The Object Tagging APIs support is available from ECS 3.5.

Feature Subfeature API

Object Object tagging SetObjectTaggingRequest

Object Object tagging GetObjectTaggingRequest

Object Object tagging DeleteObjectTaggingRequest

Object deleteobject DeleteObjectRequest

Object deleteobject DeleteObjectResult

Object deleteobject DeleteObjectsRequest

Object deleteobject DeleteObjectsResult

Object getobject S3Object

Object getobject GetObjectRequest

Object getobject GetObjectResult

Object getobject S3VersionSummary

Object getobject ObjectSummary

Object getobject ListVersionsRequest

Object getobjectacl GetObjectAclRequest

Object headobject GetObjectMetadataRequest

Object headobject ObjectMetadata

Object putobject PutObjectResult

Object putobject PutObjectRequest

Object putobjectACL SetObjectAclRequest

Object putobjectACL CanonicalGrantee

Object putobjectcopy CopyObjectRequest

Object putobjectcopy CopyObjectResult

Bucket DeleteBucket Bucket

Bucket DeleteBucket DeleteBucketRequest

Bucket DeleteBucket DeleteBucketLifecycleConfigurationRequest

56 S3

Feature Subfeature API

Bucket DeleteBucket BucketLifecycleConfiguration

Bucket GetBucket GetBucketLocationRequest

Bucket GetBucket GetBucketLifecycleConfigurationRequest

Bucket GetBucket GetBucketVersioningConfigurationRequest

Bucket GetBucketACL GetBucketAclRequest

Bucket GetBucketObjectVersions VersionListing

Bucket GetBucketVersioning BucketVersioningConfiguration

Bucket BucketOperations CreateBucket

Bucket BucketVersioning SetBucketVersioningConfigurationRequest

Bucket ACL PUTBucketACL

Bucket ACL SETBucketACL

Bucket ACL GETBucketACL

Bucket BucketPolicy SetBucketPolicyRequest

Bucket BucketPolicy GetBucketPolicyRequest

Bucket BucketOperations DeleteBucketPolicyRequest

Bucket BucketOperations ListObjectsRequest

Bucket BucketOperations HeadBucketRequest

Bucket BucketOperations HeadBucketResult

multipartupload abortmultipartupload AbortMultipartUploadRequest

multipartupload abortmultipartupload AbortMultipartUploadResult

multipartupload completemultipartupload CompleteMultipartUpload

multipartupload completemultipartupload CompleteMultipartUploadRequest

multipartupload completemultipartupload CompleteMultipartUploadResul

multipartupload initiatemultipartupload InitiateMultipartUploadRequest

multipartupload initiatemultipartupload InitiateMultipartUploadResult

multipartupload listmultipartuploads ListMultipartUploadsRequest

multipartupload listmultipartuploads ListMultipartUploadsResult

multipartupload listparts ListPartsRequest

multipartupload listparts PartListing

multipartupload listparts PartSummary

multipartupload listparts ListPartsResult

multipartupload uploadpart UploadPartRequest

multipartupload uploadpart UploadPartResult

multipartupload uploadpartcopy CopyPartRequest

multipartupload uploadpartcopy CopyPartResult

Service GetService BucketListing

CORS GETBucketCORS BucketCrossOriginConfiguration

CORS GETBucketCORS GetBucketCrossOriginConfigurationRequest

S3 57

Feature Subfeature API

CORS DELETEBucketCORS DeleteBucketCrossOriginConfigurationRequest

CORS PUT Bucket CORS CORSRule

CORS PUT Bucket CORS BucketCrossOriginConfiguration

CORS PUT Bucket CORS SetBucketCrossOriginConfigurationRequest

AWS SDK APIs not supported in ECS S3 APIs

The below table lists the AWS SDK APIs that are not supported in ECS S3.

NOTE: All these APIs are certified against AWS Java SDK version 1.11.769.

Feature API

Bucket Analytics DeleteBucketAnalyticsConfiguration

Bucket Analytics GetBucketAnalyticsConfiguration

Bucket Analytics ListBucketAnalyticsConfigurations

Bucket Analytics PutBucketAnalyticsConfiguration

Bucket Replication PutBucketReplication

Bucket Replication GetBucketReplication

Bucket Replication DeleteBucketReplication

Bucket encryption DeleteBucketEncryption

Bucket encryption GetBucketEncryption

Bucket encryption PutBucketEncryption

Bucket inventory DeleteBucketInventoryConfiguration

Bucket inventory GetBucketInventoryConfiguration

Bucket inventory ListBucketInventoryConfigurations

Bucket inventory PutBucketInventoryConfiguration

Bucket Metric DeleteBucketMetricsConfiguration

Bucket Metric GetBucketMetricsConfiguration

Bucket Metric List Bucket Metrics Configurations

Bucket Metric PutBucketMetricsConfiguration

Bucket website DeleteBucketWebsite

Bucket website GetBucketWebsite

Bucket website PutBucketWebsite

PublicAccessBlock DeletePublicAccessBlock

PublicAccessBlock GetPublicAccessBlock

PublicAccessBlock PutPublicAccessBlock

Bucket Accelarate GetBucketAccelerateConfiguration

Bucket Accelarate PutBucketAccelerateConfiguration

Bucket Logging GetBucketLogging

Bucket Logging PutBucketLogging

58 S3

Feature API

BucketRequestPayment GetBucketRequestPayment

BucketRequestPayment PutBucketRequestPayment

Bucket policy GetBucketPolicyStatus

Object Torrent GetObjectTorrent

Restore Object RestoreObejct

Object Content SelectObjectContent

Object legal hold SetObjectLegalHoldRequest

Object legal hold ObjectLockLegalHold

Object legal hold ObjectLockLegalHoldStatus

Object legal hold SetObjectLegalHoldResult

Object legal hold GetObjectLegalHoldRequest

Object legal hold GetObjectLegalHoldResult

Object retention SetObjectRetentionRequest

Object retention ObjectLockRetention

Object retention ObjectLockRetentionMode

Object retention SetObjectRetentionResult

Object retention GetObjectRetentionRequest

Object retention GetObjectRetentionResult

ECS Java SDK

The ECS Java SDK is built on the Jersey REST client, and it supports the ECS API extensions.

An example of using this SDK (S3Client) is shown below.

package com.emc.ecs.s3.sample;

import com.emc.object.s3.*;
import com.emc.object.s3.jersey.S3JerseyClient;

import java.net.URI;

public class S3ClientSample {
 public static void main(String[] args) throws Exception {
 URI endpoint = new URI("http://ecs.yourco.com:9020");
 String accessKey = "fred@yourco.com";
 String secretKey = "pcQQ20rDI2DHZOIWNkAug3wK4XJP9sQnZqbQJev3";

 S3Config config = new S3Config(endpoint);
 config.withIdentity(accessKey).withSecretKey(secretKey);

 S3Client s3Client = new S3JerseyClient(config);
 S3ClientSample sample = new S3ClientSample(s3Client);

 sample.runSample();
 }

 private final S3Client s3Client;

 public S3ClientSample(S3Client s3Client) {
 this.s3Client = s3Client;
 }

 public void runSample() {

S3 59

 String bucketName = "mybucket";
 String key1 = "test1.txt";
 String content = "Hello World!";

 try {
 s3Client.createBucket(bucketName);
 s3Client.putObject(bucketName, key1, content, "text/plain");
 } catch (S3Exception e) {
 // handle errors
 }
 }
}

Disabling request timeouts

In general, using request timeouts is discouraged to prevent the possibility of lost updates (a general issue with HTTP client
timeouts). When a PUT request times out, it may eventually perform on the server side. Before this delayed execution, if there
is another PUT request for the same object, that update is overwritten by the delayed first request (this process causes a DL
risk). To avoid this possibility, you can disable request timeouts in the client. This process avoids any possibility of an unexpected
delayed execution.

NOTE: Disabling request timeouts does not prevent concurrent issues. If there are multiple threads attempt to PUT

the same object, the system executes the last update. It is the responsibility of an application to provide any locking

mechanisms for concurrent access.

● In ECS Java SDK Client version 3.1.3 and below, the timeout parameter value is set as one minute, which has a potential DL
risk of lost updates.

● In ECS Java SDK Client version 3.2.0 and above, the timeout parameter is disabled by default.

From ECS 3.5.1.4, as an alternative to disabling the timeout parameter, you can add IfNoneMatch and IfMatch parameters in
the request header. This can be used as an optimistic locking mechanism.

For example,
● You can add headers using the below command. This command creates the object when there is no such objects.

request.withIfMatch(null).withIfNoneMatch("*")
● If you want to update an object sequentially, you can use the below command to ensure that the update follows the previous

update.

request.withIfUnmodifiedSince(null).withIfMatch(lastEtag)

Changing timeout parameters

You can set the read timeout parameter using this command:

// 3.2.0 and above
// milliseconds = 0 means disabled
s3Config.setReadTimeout(milliseconds);
//3.1.3 and below
// milliseconds = 0 means disabled
s3config.setProperty(ClientConfig.PROPERTY_READ_TIMEOUT, milliseconds);

For more information about the risk of lost updates or changing timeouts, see https://github.com/EMCECS/ecs-object-client-
java/wiki/Changing-Timeouts.

60 S3

https://github.com/EMCECS/ecs-object-client-java/wiki/Changing-Timeouts

ECS S3 error codes
The error codes that can be generated by the ECS S3 head are listed in the following table.

Table 28. Error Codes

Error Code HTTP
Status
Code

Generic Error Code Description Error

AccessDenied 403 AccessDenied Access Denied

BadDigest 400 BadDigest The Content-MD5 you specified did
not match that received.

BadRequest 400 BadRequest Bucket delete not supported.

BucketAlreadyExists 409 BucketAlreadyExists The requested bucket name is not
available. The bucket namespace is
shared by all users of the system.
Please select a different name and
try again.

BucketNotEmpty 409 BucketNotEmpty The bucket you tried to delete is not
empty.

ContentMD5Empty 400 InvalidDigest The Content-MD5 you specified was
invalid.

ContentMD5Missing 400 InvalidRequest The required Content-MD5 header
for this request is missing.

EntityTooSmall 400 EntityTooSmall The proposed upload is smaller than
the minimum allowed object size.

EntityTooLarge 400 EntityTooLarge The proposed upload exceeds the
maximum allowed object size.

IncompleteBody 400 IncompleteBody The number of bytes specified by
the Content-Length HTTP header
were not provided.

InternalError 500 InternalError An internal error was encountered.
Please try again.

ServerTimeout 500 ServerTimeout An internal timeout error was
encountered. Please try again.

InvalidAccessKeyId 403 InvalidAccessKeyId The Access Key Id you provided does
not exist.

InvalidArgument 400 InvalidArgument Invalid Argument.

NoNamespaceForAnonymous
Request

403 AccessDenied ECS could not determine the
namespace from the anonymous
request. Please use a namespace
BaseURL or include an x-emc-
namespace header.

NotSupported 403 NotSupported Background bucket deletion is not
supported for this bucket.

InvalidBucketName 400 InvalidBucketName The specified bucket is not valid.

InvalidDigestBadMD5 400 InvalidDigest The Content-MD5 you specified was
invalid.

InvalidDigest 403 SignatureDoesNotMatch The Content-MD5 you specified was
an invalid.

InvalidRequest 400 InvalidRequest Invalid Request.

S3 61

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

InvalidPart 400 InvalidPart One or more of the specified parts
could not be found. The part might
not have been uploaded.

InvalidPartOrder 400 InvalidPartOrder The list of parts was not in ascending
order. Parts list must specified in
order by part number.

InvalidPartSizeZero 400 InvalidPartSizeZero The upload part size cannot be zero.

MissingEncryption 400 InvalidRequest The multipart upload initiate
requested encryption. Subsequent
part requests must include the
appropriate encryption parameters.

NoEncryptionNeed 400 InvalidRequest The multipart initiate request did not
request encryption. Please resend the
request without sending encryption
parameters.

BadMD5 400 InvalidRequest The calculated MD5 hash of the key
did not match the hash that was
provided.

BadEncryptKey 400 InvalidRequest The provided encryption parameters
did not match the ones used
originally.

InvalidRange 416 InvalidRange The requested range cannot be
satisfied.

KeyTooLong 400 KeyTooLong The specified key is too long.

MalformedACLError 400 MalformedACLError The XML provided was not well-
formed or did not validate against the
ECS published schema.

MalformedXML 400 MalformedXML Malformed xml (that does not
conform to the published xsd) for the
configuration was sent.

MaxMessageLengthExceeded 400 MaxMessageLengthExceeded The request was too big.

MetadataTooLarge 400 MetadataTooLarge The metadata headers exceed the
maximum allowed metadata size. *

InvalidProject 400 InvalidProject The specified project is Invalid.

InvalidVPool 400 InvalidVPool The specified vPool (Replication
Group) is Invalid.

InvalidNamespace 400 InvalidNamespace The specified namespace is Invalid.

MethodNotAllowed 405 MethodNotAllowed The specified method is not allowed
against this resource.

MissingContentLength 411 MissingContentLength The Content-Length HTTP header
must be provided.

MissingRequestBodyError 400 MissingRequestBodyError An empty XML document was sent.
The error message is: Request body
is empty.

MissingSecurityHeader 400 MissingSecurityHeader The equest was missing a required
header.

62 S3

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

IncompleteLifecycleConfig 400 IncompleteLifecycleConfig At least one action needs to be
specified in a rule.

MalformedLifecycleConfig 400 MalformedLifecycleConfig The XML provided was not well-
formed or did not validate against the
published schema.

MalformedDateLifecycleConfig 400 MalformedDateLifecycleConfig The XML provided was not well-
formed or did not validate against
the published schema. Invalid Date or
Days.

NoSuchBucket 404 NoSuchBucket The specified bucket does not exist.

NoSuchBucketPolicy 404 NoSuchBucketPolicy The bucket policy does not exist.

NoSuchKey 404 NoSuchKey The specified key does not exist.

NoSuchRetention 404 NoSuchRetention The specified retention does not
exist.

ObjectUnderRetention 409 ObjectUnderRetention The object is under retention and
cannot be deleted or modified.

NoSuchUpload 404 NoSuchUpload The specified multipart upload does
not exist. The upload ID might be
invalid.

NotImplemented 501 NotImplemented The requested functionality is not
implemented.

OperationAborted 409 OperationAborted A conflicting conditional operation
is currently in progress against this
resource. Please try again.

PermanentRedirect 301 PermanentRedirect The bucket you are attempting to
access must be addressed using the
specified endpoint. Please send all
future requests to this endpoint.

PreconditionFailed 412 PreconditionFailed At least one of the preconditions you
specified did not hold.

RequestIsNotMultiPartContent 400 RequestIsNotMultiPartContent Bucket POST must be of the
enclosure type multipart/form-
data.

RequestTimeout 400 RequestTimeout The socket connection to the server
was not read from or written to
within the timeout period.

RequestTimeTooSkewed 403 RequestTimeTooSkewed The difference between the request
time and the server's time is too
large.

DateIsRequired 403 AccessDenied A valid Date or x-amz-date header
is required.

SignatureDoesNotMatch 403 SignatureDoesNotMatch The request signature calculated
does not match the signature
provided. Check the Secret Access
Key and signing method.

ZeroAmzExpires 403 Forbidden Zero value specified for x-amz-
expires.

S3 63

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

InvalidAmzExpires 400 Bad Request Invalid value specified for x-amz-
expires.

ServiceUnavailable 503 ServiceUnavailable Please reduce your request rate.

TemporaryRedirect 307 TemporaryRedirect Requests are being redirected to the
bucket while DNS updates.

TooManyBuckets 400 TooManyBuckets The request attempted to create
more buckets than allowed.

UnexpectedContent 400 UnexpectedContent The request does not support this
content.

UnresolvableGrantByEmailAddress 400 UnresolvableGrantByEmailAddress The email address you provided does
not match any account on record.

InvalidBucketState 409 InvalidBucketState The request is not valid with the
current state of the bucket.

SlowDown 503 SlowDown Please reduce your request rate.

AccountProblem 403 AccountProblem There is a problem with the specified
account that prevents the operation
from completing successfully.

CrossLocationLoggingProhibited 403 CrossLocationLoggingProhibited Cross location logging is not allowed.
Buckets in one geographic location
cannot log information to a bucket in
another location.

ExpiredToken 400 ExpiredToken The provided token has expired.

IllegalVersioningConfiguration
Exception

400 IllegalVersioningConfiguration
Exception

The Versioning configuration
specified in the request is invalid.

IncorrectNumberOfFilesInPost
Request

400 IncorrectNumberOfFilesInPost
Request

POST requires exactly one file upload
per request.

InvalidAddressingHeader 500 InvalidAddressingHeader The specified role must be
Anonymous role.

InvalidLocationConstraint 400 InvalidLocationConstraint The specified location constraint is
not valid.

InvalidPolicyDocument 400 InvalidPolicyDocument The content of the form does not
meet the conditions specified in the
policy document.

InvalidStorageClass 400 InvalidStorageClass The storage class you specified is not
valid.

InvalidTargetBucketForLogging 400 InvalidTargetBucketForLogging The target bucket for logging does
not exist, is not owned by you, or
does not have the appropriate grants
for the log delivery group.

InvalidToken 400 InvalidToken The provided token is malformed or
otherwise invalid.

InvalidURI 400 InvalidURI Unable to parse the specified URI.

MalformedPOSTRequest 400 MalformedPOSTRequest The body of the POST request is
not well-formed multipart/form-
data.

64 S3

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

MaxPostPreDataLengthExceeded
Error

400 MaxPostPreDataLengthExceeded
Error

The POST request fields preceding
the upload file were too large.

NoLoggingStatusForKey 400 NoLoggingStatusForKey There is no such thing as a logging
status subresource for a key.

NoSuchLifecycleConfiguration 404 NoSuchLifecycleConfiguration The lifecycle configuration does not
exist.

NoSuchVersion 404 NoSuchVersion Indicates that the version ID specified
in the request does not match an
existing version.

RequestTorrentOfBucketError 400 RequestTorrentOfBucketError Requesting the torrent file of a
bucket is not permitted.

UserKeyMustBeSpecified 400 UserKeyMustBeSpecified The bucket POST must contain the
specified field name. If it is specified
please check the order of the fields.

AmbiguousGrantByEmailAddress 400 AmbiguousGrantByEmailAddress The email address you provided
is associated with more than one
account.

BucketAlreadyOwnedByYou 409 BucketAlreadyOwnedByYou The previous request to create the
named bucket succeeded and you
already own it.

CredentialsNotSupported 400 CredentialsNotSupported The request does not support
credentials.

InlineDataTooLarge 400 InlineDataTooLarge The inline data exceeds the maximum
allowed size.

InvalidPayer 403 InvalidPayer All access to this object has been
disabled.

TokenRefreshRequired 400 TokenRefreshRequired The provided token must be
refreshed.

AccessModeNotSupported 409 AccessModeNotSupported The bucket does not support file
access or the requested access mode
is not allowed.

AccessModeInvalidToken 409 AccessModeInvalidToken The token for the file access switch
request is invalid.

NoSuchBaseUrl 400 NoSuchBaseUrl The specified BaseUrl does not exist.

NoDataStoreForVirtualPool 404 NoDataStoreForVirtualPool No Data Store found for Replication
Group of the bucket.

VpoolAccessNotAllowed 400 Cannot Access Vpool Bucket is hosted on a Replication
Group that is not accessible from S3.

InvalidCorsRequest 403 InvalidCorsRequest Invalid CORS request.

InvalidCorsRule 400 InvalidCorsRule Invalid CORS rule.

NoSuchCORSConfiguration 404 NoSuchCORSConfiguration The CORS configuration does not
exist.

InvalidAclRequest 404 NoACLFound The ACL does not exist.

InsufficientStorage 507 Insufficient Storage The server cannot process the
request because there is not enough
space on disk.

S3 65

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

BadMaxParts 400 InvalidArgument Argument max-parts must be an
integer between 0 and 2147483647.

BucketNotFound 404 NoSuchBucket The specified bucket does not exist.

NotSupported 400 Not Supported The bucket may be locked.

InvalidContentLength 400 Invalid content length The content length has invalid value.

InvalidVersioningRequest 403 Invalid request for version control The bucket is in compliance mode.

InvalidLifeCycleRequest 403 Invalid request for life cycle The bucket is in compliance mode.

RetentionPeriodRequired 400 Invalid request for bucket with
compliance

The bucket requires a retention
period.

Conflict 409 Conflict The bucket may be locked.

MethodForbidden 403 Forbidden Check if quota has been exceeded.

NotAcceptable 406 Content encoding not acceptable The object Content-Encoding
does not match requested Accept-
Content.

InvalidEncoding 400 Invalid URL enconding The URL encoding used is invalid.

InvalidMetadataQuery 400 Invalid metadata query entered The metadata query entered does not
conform to valid syntax

InvalidMetadataSearchList 400 Invalid metadata search list entered A keyname on the request is not a
valid indexable key, or the format of
the request list is incorrect.

MetadataSearchNotEnabled 405 Metadata search not enabled Metadata search is not enabled for
this bucket.

MetadataSearchBadParameter 400 Metadata search invalid parameter
used in query

Invalid search index key name, sort
key name or attribute name value.

MetadataSearchInvalidArgument 400 Metadata search invalid parameter
used in query

Invalid search index value format or
operator used.

MetadataSearchInvalidValuefor
Datatype

400 Metadata search key indexing found
invalid input value

Object operation failed because a
user metadata value cannot be
converted to its defined datatype.

MetadataOperationNotSupported 405 Metadata search operation not
supported

Metadata query with both AND and
OR logical operators not supported.

MetadataSearchBadSortParameter 400 Metadata search invalid sort
parameter

The sort parameter has to be present
in the query as a search parameter.

MetadataSearchRestriction 400 Buckets that are encrypted or within
an encrypted namespace cannot have
metadata search enabled

Metadata search is mutually exclusive
with bucket/namespace encryption.

MetadataSearchTooManyIndexKeys 400 The number of Index keys exceeds
the maximum allowed

The number of keys to be indexed
exceeds the maximum number
allowed, try with fewer keys.

InvalidOrNoCustomerProvided
EncryptionKey

400 Invalid or no customer provided
encryption key

No encryption key, or an encryption
key that did not match the one in the
system, was provided.

DareUnavailable 403 Server side encryption (D@RE) is not
supported

D@RE JAR/license is unavailable
hence server side encryption
requests are not supported.

66 S3

Table 28. Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

SelfCopyInvalidRequest 400 InvalidRequest The copy request is illegal because
it is trying to copy an object to
itself without changing the object's
metadata or encryption attributes.

OverLappingPrefixes 400 Invalid Request Found overlapping prefixes.

SamePrefix 400 Invalid Request Found two rules with same prefix.

XAmzContentSHA256Mismatch 400 XAmzContentSHA256Mismatch The Content-SHA256 you specified
did not match what we received

InvalidJSON 400 InvalidJSON Policies must be valid JSON and the
first byte must be {.

InvalidBucketPolicy 400 InvalidBucketPolicy Invalid Bucket Policy.

MalformedPolicy 400 MalformedPolicy Malformed Policy.

MaxIDLengthExceeded 400 InvalidArgument ID length should not exceed allowed
limit of 255.

CrossHeadAccessBeforeUpgrade 400 InvalidRequest Cross head access is not supported.

InvalidDate 400 InvalidArgument Date must be no earlier than
1970-01-01T00:00:00.000Z.

BadContentLengthRequest 400 RequestTimeout Content-Length specified is not
matching with Length of the Content
in the body.

NOTE:

● The PUT request header is limited to 8 KB in size. Within the PUT request header, the user-defined metadata is limited

to 2 KB in size. User-defined metadata is a set of key-value pairs. The size of user-defined metadata is measured by

taking the sum of the number of bytes in each key and value plus four: a colon and space to separate the name and

value and two bytes for carriage return-linefeed.

● When the system throws a 500 error, it allows the user to retry the request. In such cases, it is recommended to

use a backoff algorithm which waits progressively longer between retries for consecutive error responses. For more

information about guidance on 500 error rate response in ECS, see KB 504612.

Hadoop S3A for ECS
S3A is an open-source connector for Hadoop. It helps Hadoop users to address the storage scaling issues by providing a second
tier of storage that is optimized for cost and capacity.

NOTE: S3A support is available on Hadoop 2.7 or later version.

Hadoop S3A allows you to connect your Hadoop cluster to any S3 compatible object store that is in the public cloud, hybrid
cloud, or on-premises.

S3A performance optimization

Performance-related S3A settings are listed in the below table.

Settings Additional Information

fs.s3a.multipart.size ● Default: 100M
● Recommended: 150M

S3 67

https://support.emc.com/kb/504612

Settings Additional Information

fs.s3a.fast.upload.active.blocks ● Default: 4
● Recommended: 8

fs.s3a.fast.upload.buffer ● Default: Disk
● Recommended: Array or bytebuffer

NOTE: Heap space that is used is fs.s3a.multipart.size *
fs.s3a.fast.upload.active.block

fs.s3a.threads.max ● Default: 10
● Recommended: Change this to 'Between 25% and 50% of configured

CPU cores.

fs.s3a.multiobjectdelete.enable ● Default: True
● Recommended: True or false

fs.s3a.committer.threads ● Default: 8
● Recommended: 8

Using magic committer

It is recommended to use the magic committer to commit data to disk in various styles and to report all test performance
numbers.

NOTE: The magic committer does not support all the Hadoop tools and services. In such cases, the system uses the

FileOutputCommitter automatically.

When using the magic committer:

● Data is written directly to S3, but retargeted at the final destination.
● Conflict is managed across the directory tree.

Configure the following S3A Hadoop parameters to use the magic committer:

● fs.s3a.committer.magic.enabled: true
● fs.s3a.committer.name: magic
● mapreduce.outputcommitter.factory.scheme.s3:

org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory

Hadoop configuration analysis using ECS Service Console

The ECS Service Console (SC) can read and interpret your Hadoop configuration parameters with respect to connections to
ECS for S3A and ViPRFS. Also, SC provides a function, Get_Hadoop_Config that reads the Hadoop cluster configuration and
checks S3A and ViPRFS settings for typos, errors, and for the values that are not recommended. Contact for assistance with
installing ECS SC.

 # service-console run Get_Hadoop_Config

Getting temporary credentials

You require temporary credentials to securely access storage through Hadoop S3A.

Prior to ECS IAM, Hadoop access to ECS object storage using S3A required an ECS S3 object user name and a secret key.
Also, ACL level security was not possible with S3A. However, with ECS IAM and Secure Token Service (STS) features, an
administrator has several, more secure options for controlling access to the S3A storage. One option is to create IAM policies
that define permissions which are appropriate for the customer business case. Once the policies are in place, IAM groups can
be created and attached to the policies. Individual IAM users can then be created and become members of the IAM groups. IAM
users are assigned S3 access keys and secret keys that can be used to access the S3A data, relative to the IAM policy for the
IAM user.

68 S3

Another option for administrators is to use STS and SAML Assertions to allow federated users to obtain temporary credentials.
In this use case, a cross trust relationship must be established between the ECS and the Identity Provider. Similar to the
previous example, IAM policies must first be created. Once the policies are defined, the administrator creates IAM roles that are
attached to the IAM policies. Federated users can then authenticate and obtain a SAML assertion from the Identity Provider.
The assertion is used to assume one of the possible IAM roles that are permissible for the user. Once the role has been assumed,
the Hadoop user is provided with a temporary access key, a temporary secret key, and a temporary token. The Hadoop user
uses these temporary credentials to access the S3A data until the credentials expire. These temporary credentials correspond to
the configured policies which enforce security controls on an S3 object store.

For more information about STS, see Secure Token Service.

The temporary credentials are passed to Hadoop using these Hadoop settings:
● fs.s3a.access.key=ACCESS-KEY
● fs.s3a.secret.key=SECRET-KEY
● fs.s3a.session.token=SESSION-TOKEN
● fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider

A sample of temporary credentials provided below:

$ hdfs dfs -D fs.s3a.secret.key=SECRET-KEY -D fs.s3a.access.key=ACCESS-KEY -D
fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider
-D fs.s3a.session.token=SESSION-TOKEN -ls s3a://s3aTestBucket/test/SparkWordCount/

NOTE: The temporary credentials can last up to 12 hours.

Enabling data2 IP in ECS S3
Data2 IP allows ECS S3 to start on multiple IPs. To enable data2 on S3, contact ECS remote support.

NOTE: Data2 IP is enabled by default in S3 from ECS 3.6.1 and later versions.

S3 69

Cloud DVR
This section describes about the Cloud DVR feature in ECS.

Topics:

• Cloud DVR overview
• Cloud DVR supported APIs

Cloud DVR overview
ECS supports cloud Digital Video Recording (DVR) feature which addresses a legal copyright requirement for cable and satellite
companies. The requirement is every unit of recording mapped to an object on ECS needs to be copied a predetermined number
of times. The predetermined number of copies are known as fanout.

The cloud DVR requirement is to create "N" number of copies each of size "M" at the time of object creation. In this, "N"
indicates fanout and "M" indicates unit recording size that can be different for each write request.

NOTE: The cloud DVR feature is available from ECS 3.6 and it is disabled by default. Contact ECS remote support to enable

the cloud DVR feature.

Cloud DVR supported APIs
The following table lists the supported Cloud DVR APIs.

Method Request Header Key Request
Header Value

Request
Parameter

Response
Parameter

Description

PUT x-fanout-copy-
count

1-10,000 - - Creates x-fanout-copy-
count number of copies of
object.

GET x-fanout-copy-
index

0-9,999 - - Reads x-fanout-copy-
index of object along
with 206 (partial-content)
response code. Also, it
returns an HTTP 404 error
when there is no copy or
fanout object exist.

HEAD - - - ● fanout-copy-
size

● fanout-copy-
count

Returns fanout-specific
response headers along with
other response headers if
the object is a fanout object.

PUT-COPY x-fanout-copy-
index

0-9,999 - - Copies x-fanout-copy-
index from the fanout
source to a destination. Also,
it returns an HTTP 404 error
if there is no copy or fanout
source exist.

DELETE x-fanout-delete-
all

- - - Deletes all copies of the
fanout object.

DELETE x-fanout-copy-
index

0-9,999 - - Deletes specific copy of the
fanout object. Once this

2

70 Cloud DVR

Method Request Header Key Request
Header Value

Request
Parameter

Response
Parameter

Description

operation is succeeded, any
attempt to read the deleted
copy must return an HTTP
404 error.

GET - - fanout - Lists all copies of specific
fanout object in bucket.
Returns an HTTP 404 error
if there is no such fanout
object or fanout copies exist.

GET - - max-keys ● IsTruncated
● NextFanoutKe

yMarker
● NextFanoutIn

dexMarker

When these request
parameters are used along
with a fanout parameter, it
limits the maximum number
of entries that are returned
in a single listing response.
When a listing response is
truncated (when the bucket
contains more entries to
be listed), this parameter
is set to true. When the
parameter is set to true, the
FanoutKeyMarker and
FanoutIndexMarker are
also present in the response,
and should be used in
the next listing request to
receive the next page of
listing results.

GET - - ● fanout-
key-
marker

● fanout-
index-
marker

- When these request
parameters are used along
with a fanout parameter, it is
used as a marker to resume
paginated listing.

GET - - prefix - If the prefix parameter is
present, it limits the listing
results to objects, which
match the supplied prefix.

GET - - delimiter - If the delimiter
parameter is present, it
limits the listing results to
objects up to the first
delimiter encountered.

Cloud DVR API Examples

This section lists a few examples of Cloud DVR APIs in ECS.

Operation name: Fanout create/overwrite

Command:

./s3curl.pl --id=personal --ord http://<hostname>:9020/buck1/file1 --put=hello.txt -- -H
"x-fanout-copy-count:3" -v

Cloud DVR 71

Response:

> PUT /buck1/file1 HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 10.247.78.184:9020
> Accept: */*
> Date: Wed, 04 Dec 2019 19:35:38 +0000
> Authorization: AWS user1:xYpE4TDv8Tj/zDZgrRTiQL6fl04=
> x-fanout-copy-count:3
> Content-Length: 11
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< Date: Wed, 04 Dec 2019 19:35:38 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0af74eb8:16ed21aaacd:e6:1
< x-amz-id-2: 834d1a548e92e0e2487b59a87f45c39b522ac30fffc3cf0d12d6ccaf77c04df7
< ETag: "48e10fc1163cd2c7db2bf9a4225cd5cd"
< Last-Modified: Wed, 04 Dec 2019 19:35:38 GMT
< x-emc-mtime: 1575488138240
< x-emc-previous-object-size: 33
< Content-Length: 0

Operation name: Fanout object listing

Command:

./s3curl.pl --id=personal --ord http://<hostname>:9020/buck1/file1?fanout | xmllint --
format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutListingResult>
 <IsTruncated>false</IsTruncated>
 <FanoutObject>
 <Key>file1</Key>
 <Index>0</Index>
 </FanoutObject>
 <FanoutObject>
 <Key>file1</Key>
 <Index>1</Index>
 </FanoutObject>
 <FanoutObject>
 <Key>file1</Key>
 <Index>2</Index>
 </FanoutObject>
</FanoutListingResult>

NOTE: 0-based index represents fanout copies.

Operation name: Fanout copy read

Command:

./s3curl.pl --id=personal --ord -- -H "x-fanout-copy-index:0" http://10.247.78.184:9020/
buck1/fo1 -v

Response:

> GET /buck1/fo1 HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 10.247.78.184:9020
> Accept: */*
> Date: Wed, 29 Jan 2020 03:16:27 +0000
> Authorization: AWS user1:l6u2M9zQspTIwL2wrpGuM4O+tB8=

72 Cloud DVR

> x-fanout-copy-index:0
>
< HTTP/1.1 206 Partial Content
< Date: Wed, 29 Jan 2020 03:16:27 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0af74eb8:16fef1759e4:80:1
< x-amz-id-2: 54baf9b41b37404e6d350a806473e5d4c7a0bb10612c1dd77157abb800b9eafa
< ETag: "48e10fc1163cd2c7db2bf9a4225cd5cd"
< fanout-copy-count: 5
< fanout-copy-size: 11
< Last-Modified: Wed, 29 Jan 2020 03:14:13 GMT
< x-emc-mtime: 1580267653773
< Content-Type: application/octet-stream
< Content-Length: 11
<
HELLOOO!!!

Operation name: Fanout object HEAD

Command:

 ./s3curl.pl --id=personal --ord --head http://<hostname>:9020/buck1/file1

Response:

HTTP/1.1 200 OK
Date: Wed, 04 Dec 2019 19:45:41 GMT
ETag: "48e10fc1163cd2c7db2bf9a4225cd5cd"
fanout-copy-count: 3
fanout-copy-size: 11
Last-Modified: Wed, 04 Dec 2019 19:35:38 GMT
x-emc-mtime: 1575488138240
Server: ViPR/1.0
x-amz-request-id: 0af74eb8:16ed21aaacd:92:d
x-amz-id-2: 834d1a548e92e0e2487b59a87f45c39b522ac30fffc3cf0d12d6ccaf77c04df7
Content-Type: application/octet-stream
Content-Length: 33

NOTE: Fanout-copy-size is the size of each fanout copy.

Operation name: Fanout put copy

Command:

./s3curl.pl --id=personal --ord --copysrc=buck1/file1 -- -H "x-fanout-copy-index:0"
http://<hostname>:9020/buck1/file2 -v

Response:

> PUT /buck1/file2 HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 10.247.78.184:9020
> Accept: */*
> Date: Wed, 04 Dec 2019 21:11:58 +0000
> Authorization: AWS user1:4gpPVJWrAR1Dbh1LVO/HgK0n/2Y=
> x-amz-copy-source: buck1/file1
> x-fanout-copy-index:0
>
< HTTP/1.1 200 OK
< Date: Wed, 04 Dec 2019 21:11:58 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0af74eb8:16ed21aaacd:126:1
< x-amz-id-2: f750866dcee769ae5e0702684e42f8b8c059f074e72e5b0d5ed907f3d6723c0b
< Content-Type: application/xml
< Content-Length: 222
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CopyObjectResult xmlns="http://s3.amazonaws.com/doc/2006-03-01

Cloud DVR 73

<LastModified>2019-12-04T21:11:59.309Z</LastModified> <ETag>"1575493919143-"</ETag>
</CopyObjectResult>

NOTE: Fanout put copy is a deep copy operation.

Operation name: Fanout copy delete

Command:

./s3curl.pl --id=personal --ord --delete -- -H "x-fanout-copy-index:0" http://
<hostname>:9020/buck1/file1 -v

Response:

> DELETE /buck1/file1 HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 10.247.78.184:9020
> Accept: */*
> Date: Wed, 04 Dec 2019 21:19:52 +0000
> Authorization: AWS user1:KTtMUlRmnqa0IIDF7xA2lnWtVFc=
> x-fanout-copy-index:0
>
< HTTP/1.1 204 No Content
< Date: Wed, 04 Dec 2019 21:19:53 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0af74eb8:16ed21aaacd:12c:1
< x-amz-id-2: 834d1a548e92e0e2487b59a87f45c39b522ac30fffc3cf0d12d6ccaf77c04df7
< x-emc-previous-object-size: 33
< Content-Length: 0

Operation name: Fanout object delete

Command:

 ./s3curl.pl --id=personal --ord --delete -- -H "x-fanout-delete-all:true" http://
<hostname>:9020/buck1/file1 -v

Response:

> DELETE /buck1/file1 HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 10.247.78.184:9020
> Accept: */*
> Date: Wed, 04 Dec 2019 21:22:44 +0000
> Authorization: AWS user1:hpuk6ElD8fHtRFJe/ozpH4ic/BY=
> x-fanout-delete-all:true
>
< HTTP/1.1 204 No Content
< Date: Wed, 04 Dec 2019 21:22:44 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0af74eb8:16ed21aaacd:130:1
< x-amz-id-2: 834d1a548e92e0e2487b59a87f45c39b522ac30fffc3cf0d12d6ccaf77c04df7
< x-emc-previous-object-size: 22
< Content-Length: 0

Operation name: Fanout bucket listing

Command:

 ./s3curl.pl --id=personal --ord http://<hostname>:9020/vdc1_buck1?fanout | xmllint
--format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutBucketListingResult>
 <IsTruncated>false</IsTruncated>
 <FanoutObjects>
 <Key>file1</Key>

74 Cloud DVR

 <Index>0</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>1</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>2</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>3</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>4</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>0</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>1</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>2</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>3</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>4</Index>
 </FanoutObjects>
</FanoutBucketListingResult>

Operation name: Regular bucket listing

Command:

 ./s3curl.pl --id=personal --ord http://<hostname>:9020/vdc1_buck1 | xmllint --format
-

Response:

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>vdc1_buck1</Name>
 <Prefix/>
 <Marker/>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <ServerSideEncryptionEnabled>false</ServerSideEncryptionEnabled>
 <Contents>
 <Key>copyfile1</Key>
 <LastModified>2019-12-14T22:44:22.386Z</LastModified>
 <ETag>"1576363462360-"</ETag>
 <Size>11</Size>
 <StorageClass>STANDARD</StorageClass>
 <Owner>
 <ID>user1</ID>
 <DisplayName>user1</DisplayName>
 </Owner>
 <IsFanoutObject>false</IsFanoutObject>
 </Contents>
 <Contents>
 <Key>file1</Key>
 <LastModified>2019-12-14T22:47:34.319Z</LastModified>
 <ETag>"48e10fc1163cd2c7db2bf9a4225cd5cd"</ETag>

Cloud DVR 75

 <Size>55</Size>
 <StorageClass>STANDARD</StorageClass>
 <Owner>
 <ID>user1</ID>
 <DisplayName>user1</DisplayName>
 </Owner>
 <IsFanoutObject>true</IsFanoutObject>
 </Contents>
 <Contents>
 <Key>file2</Key>
 <LastModified>2019-12-14T22:47:44.763Z</LastModified>
 <ETag>"48e10fc1163cd2c7db2bf9a4225cd5cd"</ETag>
 <Size>55</Size>
 <StorageClass>STANDARD</StorageClass>
 <Owner>
 <ID>user1</ID>
 <DisplayName>user1</DisplayName>
 </Owner>
 <IsFanoutObject>true</IsFanoutObject>
 </Contents>
</ListBucketResult>

Operation name: Fanout bucket listing with max-keys

Command:

./s3curl.pl --id=personal --ord "http://<hostname>:9020/vdc1_buck1?fanout&max-keys=3" |
xmllint --format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutBucketListingResult>
 <NextFanoutKeyMarker>file1</NextFanoutKeyMarker>
 <NextFanoutIndexMarker>2</NextFanoutIndexMarker>
 <IsTruncated>true</IsTruncated>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>0</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>1</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>2</Index>
 </FanoutObjects>
</FanoutBucketListingResult>

NOTE: The token is the last key in the result set.

Operation name: Fanout bucket listing with token

Command:

 ./s3curl.pl --id=personal --ord "http://<hostname>:9020/vdc1_buck1?fanout&max-
keys=3&fanout-key-marker=file1&fanout-index-marker=2" | xmllint --format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutBucketListingResult>
 <NextFanoutKeyMarker>file2</NextFanoutKeyMarker>
 <NextFanoutIndexMarker>0</NextFanoutIndexMarker>
 <IsTruncated>true</IsTruncated>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>3</Index>
 </FanoutObjects>

76 Cloud DVR

 <FanoutObjects>
 <Key>file1</Key>
 <Index>4</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>0</Index>
 </FanoutObjects>
</FanoutBucketListingResult>

Operation name: Fanout bucket listing with prefix

Command:

 ./s3curl.pl --id=personal --ord "http://<hostname>:9020/vdc1_buck1?fanout&max-
keys=3&prefix=file2" | xmllint --format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutBucketListingResult>
 <NextFanoutKeyMarker>file2</NextFanoutKeyMarker>
 <NextFanoutIndexMarker>2</NextFanoutIndexMarker>
 <IsTruncated>true</IsTruncated>
 <FanoutPrefix>file2</FanoutPrefix>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>0</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>1</Index>
 </FanoutObjects>
 <FanoutObjects>
 <Key>file2</Key>
 <Index>2</Index>
 </FanoutObjects>
</FanoutBucketListingResult>

Operation name: Fanout bucket listing with delimiter

Command:

 ./s3curl.pl --id=personal --ord "http://<hostname>:9020/vdc1_buck1?
fanout&delimiter=%2f&max-keys=3" | xmllint --format -

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FanoutBucketListingResult>
 <NextFanoutKeyMarker>file1</NextFanoutKeyMarker>
 <NextFanoutIndexMarker>0</NextFanoutIndexMarker>
 <IsTruncated>true</IsTruncated>
 <Delimiter>/</Delimiter>
 <FanoutObjects>
 <Key>file1</Key>
 <Index>0</Index>
 </FanoutObjects>
 <FanoutCommonPrefixes>
 <FanoutPrefix>dir1/</FanoutPrefix>
 </FanoutCommonPrefixes>
 <FanoutCommonPrefixes>
 <FanoutPrefix>dir2/</FanoutPrefix>
 </FanoutCommonPrefixes>
</FanoutBucketListingResult>

Cloud DVR 77

ECS IAM for S3
This section describes about the ECS Identity and Access Management (IAM) feature for S3.
Topics:

• ECS IAM overview
• ECS IAM identities
• Backward compatibility
• ECS IAM API and SDK access
• AWS SDK APIs not supported in ECS IAM
• ECS IAM error codes
• ECS IAM supported condition keys
• ECS IAM limitations on entities and objects
• ECS IAM access management
• Secure Token Service
• ECS IAM SAML support

ECS IAM overview
ECS Identity and Access Management (IAM) enables you to have fine-grained access to the ECS S3 resources securely. This
functionality ensures that each access request to an ECS resource is identified, authenticated, and authorized. ECS IAM allows
you to add users, roles, and groups. You can also grant and restrict the access by adding policies to the ECS IAM entities.

NOTE:

● ECS IAM functionality is only supported for the S3 protocol. ECS IAM policies and settings have no impact when data is

accessed through other protocols.

● ECS IAM is not enabled for CAS or filesystem enabled buckets.

● ECS IAM entities coexist with legacy object and management users.

ECS IAM identities
ECS IAM provides the ability to manage IAM identities within each namespace such as users, groups, roles, and namespace root
user.

ECS IAM Identities Description

Users An ECS IAM user represents a person or an application in the namespace that can interact
with the ECS resources.
● ECS IAM users belong to one or more IAM groups.
● ECS IAM users have long-term credentials associated with them which are used to access

ECS S3, IAM, and STS resources. The credential consists of an access key ID and a secret
access key.

● ECS IAM users can access API but not the user interface.

Groups ECS IAM Groups is a collection of ECS IAM users. Groups let you specify permissions for all
the users in the group. Groups cannot contain other groups.

NOTE: Groups cannot access any ECS APIs only IAM users, and roles can access it.

Roles An ECS IAM role is an identity that is assumable by trusted internal and external users. A role
does not have any credentials associated with it. Instead, when an entity assumes a role, the
system provides you the temporary credentials which contain an access key ID, secret access
key, and a security token.

3

78 ECS IAM for S3

ECS IAM Identities Description

Root user Namespace root user is an admin user who can also access the user interface.
● Namespace root user is used as owner in ACLs for IAM access.
● Namespace root user console access can be enabled by specifying a password during

namespace creation or later.

For more information about configuring these identities, see ECS Administration Guide.

Tagging ECS IAM users and roles

Tags are custom key-value pairs that can be associated with users and roles. These tags are used to control the access of an
entity to ECS resources.

NOTE:

● Groups and policies cannot be tagged.

● You can apply the same tag to multiple entities, but the tags on an entity cannot have same key.

● Maximum 50 tags per an entity are allowed.

Backward compatibility
This section describes about IAM backward compatibility with ECS legacy entities.

ECS legacy users

Once all the Virtual Data Centers (VDC) are upgraded, it is possible to create IAM users. In detail:
● The existing users created prior to upgrade, also referred as legacy users, continue to exist.
● It is possible to create a class of users called IAM users. IAM users have S3 access, and the IAM capabilities only apply to

IAM users.
● There is no behavioral change for legacy users including S3 access.
● Each namespace (account) has a root user similar to AWS root user. They have access similar to an AWS root user access.
● IAM users are similar to AWS IAM users in all respects. For example, they do not use the username as the access key id.
● It is possible to create both legacy and IAM users.

Access control

In this section, ECS IAM users and the namespace root users are referred as IAM users.
● Access control for legacy users remains the same.
● Access control for IAM users is similar to AWS IAM user access control in all respects including ACLs.
● Changing the access control for IAM users such as using identity policies, bucket policies, and ACLs do not have any impact

on legacy users access control.
● IAM users can access objects and buckets that are created by legacy users if they are provided with the right permissions.

By default,
○ Buckets that are created by legacy users have a default ACL associated with the namespace account that contains the

bucket. This ACL provides full control over the bucket. This is true for the buckets that are created before or after the
upgrade.

○ Objects that are created by legacy users have default ACL associated with the legacy user only.
○ IAM users who have the required permissions can modify ACLs in buckets and objects that are created by legacy users

and set an AWS compatible ACL (account ACL or group ACL).
● Legacy users can access objects and buckets that are created by IAM users. For that, legacy user access control should

follow legacy semantics. It must also have legacy ACLs associated with them. In detail:
○ The legacy owner for buckets that are created by IAM users is the namespace root user that contains the bucket.
○ The legacy owner for objects that are created by IAM users are respectively the namespace root of the IAM user.
○ Users with appropriate permissions can set or change ACLs anytime.

● A single bucket policy is supported for both IAM and legacy users.

ECS IAM for S3 79

● Management users can attach both IAM and legacy ACLs to buckets from the user interface and using the API.

ECS IAM API and SDK access
This section describes the supported ECS IAM APIs and its access methods.

ECS IAM supported APIs

The following table lists the supported ECS IAM APIs.

Actions Description (*required) Access Level Resource
Types
(*required)

AddUserToGroup Adds an IAM user to the specified IAM
group.

URL: /iam/?Action=AddUserToGroup

Query Parameters: GroupName*,
UserName*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Write group*

AttachGroupPolicy Attach a specified managed policy to the
specified IAM group.

URL: /iam/?Action=AttachGroupPolicy

Query Parameters: GroupName*,
PolicyArn*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure, InvalidInput

Permissions
management

group*

AttachRolePolicy Attach a specified managed policy to the
specified IAM role.

URL: /iam/?Action=AttachRolePolicy

Query Parameters: RoleName*,
PolicyArn*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure, InvalidInput

Permissions
management

role*

AttachUserPolicy Attach a specified managed policy to the
specified IAM user.

URL: /iam/?Action=AttachUserPolicy

Query Parameters: UserName*,
PolicyArn*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure, InvalidInput

Permissions
management

user*

CreateAccessKey Creates a new Secret Access credential
for specified IAM user.

URL: /iam/?Action=CreateAccessKey

Query Parameters: UserName
Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Write user*

CreateGroup Creates a IAM group in namespace.

URL: /iam/?Action=CreateGroup

Write group*

80 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

Query Parameters: GroupName*, Path
(only '/' supported)

Error: EntityAlreadyExists, LimitExceeded,
NoSuchEntity, ServiceFailure

CreatePolicy Creates a new managed policy in
namespace.

URL: /iam/?Action=CreatePolicy

Query Parameters: Description, Path
(only '/' allowed), PolicyDocument*,
PolicyName*

Error: EntityAlreadyExists,
InvalidInput, LimitExceeded,
MalformedPolicyDocument, ServiceFailure

Permissions
management

policy*

CreatePolicyVersion Creates a version of the specified
managed policy in namespace.

URL: /iam/?Action=CreatePolicy

Query Parameters: PolicyArn*,
PolicyDocument*, SetAsDefault*

Error: InvalidInput, LimitExceeded,
MalformedPolicyDocument,
NoSuchEntity, ServiceFailure

Permissions
management

policy*

CreateRole Creates a IAM role in namespace.

URL: /iam/?Action=CreateRole

Query Parameters:
AssumeRolePolicyDocument*,
Description, MaxSessionDuration,
PermissionsBoundary, Tags, RoleName*,
Path (only '/' supported)

Error: EntityAlreadyExists, InvalidInput,
LimitExceeded, NoSuchEntity,
ServiceFailure, MalformedPolicyDocument

Write role*

CreateSAMLProvider Creates a SAML 2.0 identity provider
(IdP) in namespace

URL: /iam/?Action=CreateSAMLProvider

Query Parameters: Name*,
SAMLMetadataDocument*

Error: EntityAlreadyExists, InvalidInput,
LimitExceeded, ServiceFailure

Write saml-
provider*

CreateUser Creates a IAM user in namespace.

URL: /iam/?Action=CreateUser

Query Parameters: Path (only '/'
supported), PermissionsBoundary, Tags,
UserName*

Error: EntityAlreadyExists, InvalidInput,
LimitExceeded, NoSuchEntity,
ServiceFailure

Write user*

ECS IAM for S3 81

Actions Description (*required) Access Level Resource
Types
(*required)

DeleteAccessKey Deletes the specified access key
credential that is associated with the
specified IAM user.

URL: /iam/?Action=DeleteAccessKey

Query Parameters: AccessKeyId*,
UserName

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Write user*

DeleteGroup Deletes the specified IAM group from
namespace.

URL: /iam/?Action=DeleteGroup

Query Parameters: GroupName*

Error: DeleteConflict, LimitExceeded,
NoSuchEntity, ServiceFailure

Write group*

DeleteGroupPolicy Deletes the specified inline policy from its
group.

URL: /iam/?Action=DeleteGroupPolicy

Query Parameters: GroupName*,
PolicyName*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Permissions
management

group*

DeletePolicy Deletes the specified managed policy

URL: /iam/?Action=DeletePolicy

Query Parameters: PolicyArn*

Error: DeleteConflict, InvalidInput,
LimitExceeded, NoSuchEntity,
ServiceFailure

Permissions
management

policy*

DeletePolicyVersion Deletes the specified version from the
managed policy.

URL: /iam/?Action=DeletePolicyVersion

Query Parameters: PolicyArn*, VersionId*

Error: DeleteConflict, InvalidInput,
LimitExceeded, NoSuchEntity,
ServiceFailure

Permissions
management

policy*

DeleteRole Grants permission to delete the specified
role.

URL: /iam/?Action=DeleteRole

Query Parameters: RoleName*

Error: DeleteConflict, LimitExceeded,
NoSuchEntity, ServiceFailure

Write role*

DeleteRolePermissionsBoundary Deletes the permissions boundary for the
specified IAM role.

URL: /iam/?
Action=DeleteRolePermissionsBoundary

Query Parameters: RoleName*

Permissions
management

role*

82 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

Error: NoSuchEntity, ServiceFailure

DeleteRolePolicy Deletes the specified inline policy from its
role.

URL: /iam/?Action=DeleteRolePolicy

Query Parameters: RoleName*,
PolicyName*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Permissions
management

role*

DeleteSAMLProvider Deletes a specified SAML provider.

URL: /iam/?Action=DeleteSAMLProvider

Query Parameters: SAMLProviderArn*

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Write saml-
provider*

DeleteUser Deletes the specified IAM user from
namespace.

URL: /iam/?Action=DeleteUser

Query Parameters: UserName*

Error: DeleteConflict, LimitExceeded,
NoSuchEntity, ServiceFailure

Write user*

DeleteUserPermissionsBoundary Deletes the permissions boundary for the
specified IAM user.

URL: /iam/?
Action=DeleteUserPermissionsBoundary

Query Parameters: UserName*

Error: NoSuchEntity, ServiceFailure

Permissions
management

user*

DeleteUserPolicy Deletes the specified inline policy from its
user.

URL: /iam/?Action=DeleteUserPolicy

Query Parameters: UserName*,
PolicyName*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Permissions
management

user*

DetachGroupPolicy Detach a specified managed policy from
the specified IAM group.

URL: /iam/?Action=DetachGroupPolicy

Query Parameters: GroupName*,
PolicyArn*

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Permissions
management

group*

DetachRolePolicy Detach a specified managed policy from
the specified IAM role.

URL: /iam/?Action=DetachRolePolicy

Query Parameters: RoleName*,
PolicyArn*

Permissions
management

role*

ECS IAM for S3 83

Actions Description (*required) Access Level Resource
Types
(*required)

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

DetachUserPolicy Detach a specified managed policy from
the specified IAM user.

URL: /iam/?Action=DetachUserPolicy

Query Parameters: UserName*,
PolicyArn*

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Permissions
management

user*

GetAccessKeyLastUsed Retrieves best effort information about
when specified access key was last used.

URL: /iam/?
Action=GetAccessKeyLastUsed

Query Parameters: AccessKeyId*

Error: ServiceFailure

Read user*

GetContextKeysForCustomPolicy Retrieves list of all of the context keys
referenced in the input policies.

URL: /iam/?
Action=GetContextKeysForCustomPolicy

Query Parameters: PolicyInputList*

Error: InvalidInput

Read -

GetContextKeysForPrincipalPolicy Detach a specified managed policy from
the specified IAM user.

URL: /iam/?
Action=GetContextKeysForPrincipalPolicy

Query Parameters: PolicyInputList,
PolicySourceArn*

Error : InvalidInput, NoSuchEntity

Read user, group,
role

GetGroup Returns a list of IAM users that are in the
specified IAM group. You can paginate the
results using the MaxItems and Marker
parameters.

URL: /iam/?Action=GetGroup

Query Parameters: GroupName*, Marker,
MaxItems

Error: NoSuchEntity, ServiceFailure

Read group*

GetGroupPolicy Gets the specified inline policy document
from the specified IAM group.

URL: /iam/?Action=GetGroupPolicy

Query Parameters: GroupName*,
PolicyName*

Error: NoSuchEntity, ServiceFailure

Read group*

GetPolicy Retrieve information about the specified
managed policy.

Read policy*

84 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

URL: /iam/?Action=GetPolicy

Query Parameters: PolicyArn*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

GetPolicyVersion Retrieve information about a version of
the specified managed policy.

URL: /iam/?Action=GetPolicyVersion

Query Parameters: PolicyArn*, VersionId*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

Read policy*

GetRole Retrieves information about the specified
role.

URL: /iam/?Action=GetRole

Query Parameters: RoleName*

Error: NoSuchEntity, ServiceFailure

Read role*

GetPolicy Retrieves information about specified
managed policy.

URL: /iam/?Action=GetPolicy

Query Parameters: PolicyArn*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

Read policy*

GetPolicyVersion Retrieves information about specified
version of the managed policy.

URL: /iam/?Action=GetPolicyVersion

Query Parameters: PolicyArn*, VersionId*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

Read policy*

GetRolePolicy Retrieves the specified inline policy
document that is embedded with the
specified IAM role.

URL: /iam/?Action=GetRolePolicy

Query Parameters: RoleName*,
PolicyName*

Error: NoSuchEntity, ServiceFailure

Read role*

GetSAMLProvider Retrieves the SAML provider metadata
document that is associated with the IAM
SAML provider resource.

URL: /iam/?Action=GetSAMLProvider

Query Parameters: SAMLProviderArn*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

Read saml-
provider*

GetUser Retrieves information about the specified
IAM user

URL: /iam/?Action=GetUser

Read user*

ECS IAM for S3 85

Actions Description (*required) Access Level Resource
Types
(*required)

Query Parameters: UserName

Error: NoSuchEntity, ServiceFailure

GetUserPolicy Retrieves the specified inline policy
document that of the specified IAM user.

URL: /iam/?Action=GetUserPolicy

Query Parameters: UserName*,
PolicyName*

Error: NoSuchEntity, ServiceFailure

Read user*

ListAccessKeys Lists information about the access key IDs
that are associated with the specified IAM
user.

URL: /iam/?Action=ListAccessKeys

Query Parameters: UserName*

Error: NoSuchEntity, ServiceFailure

List user*

ListAttachedGroupPolicies List all managed policies that are attached
to the specified IAM group.

URL: /iam/?
Action=ListAttachedGroupPolicies

Query Parameters: GroupName*, Marker,
MaxItems, PathPrefix (only '/' supported)

Error: InvalidInput, NoSuchEntity,
ServiceFailure

List group*

ListAttachedRolePolicies List all managed policies that are attached
to the specified IAM role.

URL: /iam/?
Action=ListAttachedRolePolicies

Query Parameters: RoleName*, Marker,
MaxItems, PathPrefix (only '/' supported)

Error: InvalidInput, NoSuchEntity,
ServiceFailure

List role*

ListAttachedUserPolicies List all managed policies that are attached
to the specified IAM user URL: /iam/?
Action=ListAttachedUserPolicies Query
Parameters: UserName*, Marker,
MaxItems, PathPrefix (only '/' supported)
Error: InvalidInput, NoSuchEntity,
ServiceFailure

List user*

ListEntitiesForPolicy Lists all entities (IAM users, groups, and
roles) that are attached to the specified
managed policy.

URL: /iam/?Action=ListEntitiesForPolicy

Query Parameters: EntityFilter, Marker,
MaxItems, PathPrefix (only '/' supported),
PolicyArn*, PolicyUsageFilter

Error: InvalidInput, NoSuchEntity,
ServiceFailure

List policy*

86 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

ListGroupPolicies List the names of the inline policies that
are in the specified IAM group.

URL: /iam/?Action=ListGroupPolicies

Query Parameters: GroupName*, Marker,
MaxItems

Error: NoSuchEntity, ServiceFailure

List group*

ListGroups List the IAM groups that have the
specified path prefix.

URL: /iam/?Action=ListGroups

Query Parameters: Marker, MaxItems,
PathPrefix (only '/' supported)

Error: ServiceFailure

List -

ListGroupsForUser List the IAM groups that the provided IAM
user belongs to.

URL: /iam/?Action=ListGroupsForUser

Query Parameters: Marker, MaxItems,
UserName*

Error: NoSuchEntity, ServiceFailure

List user*

ListMulitpartUploads

ListPolicies Lists all managed policies that are
associated with the namespace.

URL: /iam/?Action=ListPolicies

Query Parameters: Marker, MaxItems,
OnlyAttached, PathPrefix (only '/'
supported), PolicyUsageFilter, Scope

Error: InvalidInput, NoSuchEntity,
ServiceFailure

List -

ListPolicyVersions Lists information about the versions of
the requested managed policy.

URL: /iam/?Action=ListPolicyVersions

Query Parameters: Marker, MaxItems,
PolicyArn*

Error: InvalidInput, NoSuchEntity,
ServiceFailure

List policy*

ListRolePolicies List the names of the inline policies that
are in the specified IAM role.

URL: /iam/?Action=ListRolePolicies

Query Parameters: RoleName*, Marker,
MaxItems

Error: NoSuchEntity, ServiceFailure

List role*

ListRoles List the IAM roles that have the specified
path prefix.

URL: /iam/?Action=ListRoles

Query Parameters: Marker, MaxItems,
PathPrefix (only '/' supported)

List -

ECS IAM for S3 87

Actions Description (*required) Access Level Resource
Types
(*required)

Error: ServiceFailure

ListRoleTags Lists the tags that are attached to the
specified role.

URL: /iam/?Action=ListRoleTags

Query Parameters: Marker, MaxItems,
RoleName*

Error: NoSuchEntity, ServiceFailure

List role*

ListSAMLProviders List the SAML providers in the
namespace.

URL: /iam/?Action=ListSAMLProviders

Error: ServiceFailure

List -

ListUserPolicies List the names of the inline policies that
are in the specified IAM user.

URL: /iam/?Action=ListUserPolicies

Query Parameters: UserName*, Marker,
MaxItems

Error: NoSuchEntity, ServiceFailure

List user*

ListUsers List the IAM users that have the specified
path prefix.

URL: /iam/?Action=ListUsers

Query Parameters: Marker, MaxItems,
PathPrefix (only '/' supported)

Error: ServiceFailure

List -

ListUserTags Lists the tags that are attached to the
specified user.

URL: /iam/?Action=ListUserTags

Query Parameters: Marker, MaxItems,
UserName*

Error: NoSuchEntity, ServiceFailure

List user*

PutGroupPolicy Adds or updates an inline policy document
to the specified IAM group.

URL: /iam/?Action=PutGroupPolicy

Query Parameters: GroupName*,
PolicyDocument*, PolicyName*

Error: LimitExceeded,
MalformedPolicyDocument,
NoSuchEntity, ServiceFailure

Permissions
management

group*

PutRolePermissionsBoundary Sets or updates the provided managed
policy as the roles permissions boundary.

URL: /iam/?
Action=PutRolePermissionsBoundary

Query Parameters: RoleName*,
PermissionsBoundary*

Permissions
management

role*

88 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

Error: InvalidInput, PolicyNotAttachable,
NoSuchEntity, ServiceFailure

PutRolePolicy Adds or updates an inline policy document
to the specified IAM role.

URL: /iam/?Action=PutRolePolicy

Query Parameters: RoleName*,
PolicyDocument*, PolicyName*

Error: LimitExceeded,
MalformedPolicyDocument,
NoSuchEntity, ServiceFailure

Permissions
management

role*

PutUserPermissionsBoundary Sets or updates the provided managed
policy as the users permissions boundary.

URL: /iam/?
Action=PutUserPermissionsBoundary

Query Parameters: UserName*,
PermissionsBoundary*

Error: InvalidInput, PolicyNotAttachable,
NoSuchEntity, ServiceFailure

Permissions
management

user*

PutUserPolicy Adds or updates an inline policy document
to the specified IAM user.

URL: /iam/?Action=PutUserPolicy

Query Parameters: UserName*,
PolicyDocument*, PolicyName*

Error: LimitExceeded,
MalformedPolicyDocument,
NoSuchEntity, ServiceFailure

Permissions
management

user*

RemoveUserFromGroup Remove an IAM user from the specified
group.

URL: /iam/?
Action=RemoveUserFromGroup

Query Parameters: UserName*,
GroupName*

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

Write group*

SetDefaultPolicyVersion Sets the specified version of the policy as
default

URL: /iam/?Action=
SetDefaultPolicyVersion

Query Parameters: PolicyArn*, VersionId*

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Permissions
management

policy*

SimulateCustomPolicy Simulate how a set of IAM policies
and optionally a resource-based policy
works with a list of API operations and
RCS resources to determine the policies
effective permissions.

Read -

ECS IAM for S3 89

Actions Description (*required) Access Level Resource
Types
(*required)

URL: /iam/?Action=
SimulateCustomPolicy

Query Parameters: ActionNames*,
CallerArn, ContextEntries, Marker,
MaxItems, PolicyInputList*,
ResourceArns, ResourceOwner,
ResourcePolicy

Error: InvalidInput, PolicyEvaluation

SimulatePrincipalPolicy Simulate how a set of IAM policies
attached to an IAM entity (user, group, or
role) works with a list of API operations
and ECS resources to determine the
policies effective permissions.

URL: /iam/?Action=
SimulatePrincipalPolicy

Query Parameters: ActionNames*,
CallerArn, ContextEntries, Marker,
MaxItems, PolicyInputList,
PolicySourceArn*, ResourceArns,
ResourceOwner, ResourcePolicy

Error : InvalidInput, NoSuchEntity,
PolicyEvaluation

Read user, group,
role

TagRole Add tags to an IAM role.

URL: /iam/?Action=TagRole

Query Parameters: RoleName*, Tags

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Tagging role*

TagUser Add tags to an IAM user .

URL: /iam/?Action=TagUser

Query Parameters: UserName*, Tags

Error: InvalidInput, LimitExceeded,
NoSuchEntity, ServiceFailure

Tagging user*

UntagRole Remove tags from specified IAM role.

URL: /iam/?Action=UntagRole

Query Parameters: RoleName*, Tags

Error: NoSuchEntity, ServiceFailure

Tagging role*

UntagUser Remove tags from specified IAM user.

URL: /iam/?Action=UntagUser

Query Parameters: UserName*, Tags

Error: NoSuchEntity, ServiceFailure

Tagging user*

UpdateAccessKey Update the status of the specified access
key as Active or Inactive.

URL: /iam/?Action=UpdateAccessKey

Query Parameters: AccessKeyId*,
Status*, UserName

Write user*

90 ECS IAM for S3

Actions Description (*required) Access Level Resource
Types
(*required)

Error: LimitExceeded, NoSuchEntity,
ServiceFailure

UpdateAssumeRolePolicy Update the policy that grants an IAM
entity permission to assume a role.

URL: /iam/?
Action=UpdateAssumeRolePolicy

Query Parameters: PolicyDocument*,
RoleName*

Error: LimitExceeded,
MalformedPolicyDocument,
NoSuchEntity, ServiceFailure

Permissions
management

role*

UpdateRole Updates the description or maximum
session duration setting of an IAM role.

URL: /iam/?Action=UpdateRole

Query Parameters: Description,
MaxSessionDuration, RoleName*

Error: NoSuchEntity, ServiceFailure

Write role*

UpdateSAMLProvider Updates the metadata document for an
existing SAML provider.

URL: /iam/?Action=UpdateSAMLProvider

Query Parameters:
SAMLMetadataDocument*,
SAMLProviderArn*

Error: Invalidinput, LimitExceeded,
NoSuchEntity, ServiceFailure

Write saml-
provider*

ECS S3 and IAM API access

API Access method

S3 ● Legacy users with appropriate access key credentials and relevant bucket policy/ACLs
can access S3 API.

● IAM users with appropriate valid access key credentials and appropriate permissions can
access S3 API.

● IAM roles with appropriate temporary credentials and appropriate permissions can
access S3 API.

NOTE: ECS management users must create legacy users or IAM users or IAM roles
with the required permissions to access S3 API.

IAM ● Legacy users cannot access IAM API.
● IAM users with valid credentials and appropriate permissions can access IAM API.
● IAM roles with valid temporary credentials and appropriate permissions can access IAM

API.
● ECS management users can obtain X-SDS-AUTH-TOKEN from auth service to access

IAM API.

NOTE: ECS management users can also create IAM users or IAM roles with the
required permissions to access IAM API.

Other management APIs ● Legacy users, IAM users, and IAM roles cannot access other management APIs.

ECS IAM for S3 91

API Access method

● ECS management users can obtain X-SDS-AUTH-TOKEN from auth service to access
other management APIs.

Other data head APIs (except
S3)

● Legacy users with valid access key credentials and appropriate permissions can access
other data head APIs.

● IAM users or roles cannot access other data head APIs.

NOTE: ECS management users must create legacy users with the required permissions
to access other data head APIs.

AWS SDK APIs not supported in ECS IAM
The below table lists the AWS SDK APIs that are not supported in ECS IAM.

NOTE: All these APIs are certified against AWS Java SDK version 1.11.769.

Feature API

User/Account UpdateUser

User/Account UploadSSHPublicKey

User/Account UpdateSSHPublicKey

User/Account DeleteSSHPublicKey

User/Account ListSSHPublicKeys

User/Account GetSSHPublicKey

User/Account ChangePassword

User/Account CreateAccountAlias

User/Account DeleteAccountAlias

User/Account ListAccountAliases

User/Account CreateLoginProfile

User/Account GetLoginProfile

User/Account UpdateLoginProfile

User/Account DeleteLoginProfile

OIDC Support CreateOpenIDConnectProvider

OIDC Support AddClientIDToOpenIDConnectProvider

OIDC Support GetOpenIDConnectProvider

OIDC Support ListOpenIDConnectProviders

OIDC Support DeleteOpenIDConnectProvider

OIDC Support RemoveClientIDFromOpenIDConnectProvider

OIDC Support UpdateOpenIDConnectProviderThumbprint

Policy DeleteAccountPasswordPolicy

Policy GetAccountPasswordPolicy

Policy UpdateAccountPasswordPolicy

Policy ListPoliciesGrantingServiceAccess

Group UpdateGroup

92 ECS IAM for S3

Feature API

Role UpdateRoleDescription

Role CreateServiceLinkedRole

Role GetServiceLinkedRoleDeletionStatus

Role DeleteServiceLinkedRole

STS SetSecurityTokenServicePreferences

MFA CreateVirtualMFADevice

MFA DeactivateMFADevice

MFA DeleteVirtualMFADevice

MFA EnableMFADevice

MFA ListMFADevices

MFA ListVirtualMFADevices

MFA ResyncMFADevice

Report/Audit GenerateCredentialReport

Report/Audit GenerateOrganizationsAccessReport

Report/Audit GenerateServiceLastAccessedDetails

Report/Audit GetAccountAuthorizationDetails

Report/Audit GetAccountSummary

Report/Audit GetCredentialReport

Report/Audit GetOrganizationsAccessReport

Report/Audit GetServiceLastAccessedDetails

Report/Audit GetServiceLastAccessedDetailsWithEntities

Report/Audit GetServiceLinkedRoleDeletionStatus

ECS IAM error codes
The below table lists the ECS IAM error codes.

Error type HTTP status code Description

AccessDeniedException 400 Indicates that you do not have the required access to
perform the action.

ConcurrentModification 409 Indicates that multiple requests are submitted simultaneously
to modify the object. You need to wait for a few minutes and
submit the request again.

DeleteConflict 409 Indicates that the request is raised to delete a resource that
is attached with another entity.

DeleteBucket 400 Indicates that background delete is active, that the bucket is
not empty, or that empty bucke is in progress.

EntityAlreadyExists 409 Indicates that the request is raised to create a resource that
already exists.

ExpiredToken 400 Indicates that the Web identity token that is used to perform
the action is expired or not valid.

ECS IAM for S3 93

Error type HTTP status code Description

IDPRejectedClaim 403 Indicates that the identity provider (IdP) reported that
authentication failed.

InternalFailure 500 Indicates that the request failed due to an unknown error,
exception, or failure.

InvalidAction 400 Indicates that the requested action is not valid.

InvalidInput 400 Indicates that an invalid or an out-of-range value is provided
for an input.

InvalidParameterValue 400 Indicates that an invalid or an out-of-range value is provided
for an input parameter.

LimitExceeded 409 Indicates that the request is rejected because an attempt is
made to create resources beyond the current account limits.

MalformedPolicyDocument 400 Indicates that the provided policy document is malformed.

MissingAction 400 Indicates that the action or a required parameter is missed in
the request.

MissingParameter 400 Indicates that the required parameter is missed in the
request.

NoSuchEntity 404 Indicates that the referenced entity does not exist.

NotImplemented 501 Indicates that the mentioned functionality is not implemented
yet.

PackedPolicyTooLarge 400 Indicates that the total packed size of the session policies
and session tags combined is too large. See ECS IAM
limitations on entities and objects.

PermissionDenied 403 Indicates that the principal does not have the required
permission to perform the action.

ServiceFailure 500 Indicates that the request is failed because of an unknown
error, exception, or failure.

ServiceUnavailable 503 Indicates that the request is failed due to a temporary failure
of the server.

ValidationError 400 Indicates that the input fails to satisfy the constraints
specified by the specific API.

Various Bucket Errors 400 Indicates that empty bucket is in progress, or that writes are
not allowed when empty bucket is in progress.

ECS IAM supported condition keys
ECS IAM supports the following condition keys:

Global condition keys Type Description

aws:CurrentTime Date To check for date and time conditions

aws:EpochTime Date To check for date and time conditions using a date in
epoch or UNIX time

aws:PrincipalArn ARN Checks the ARN of the IAM user or role that made the
request.

aws:UserAgent String To check the client application of the requestor.

aws:PrincipalTag/ tag-key String Checks that the tag attached to the principal making
the request matches the specified key name and
value.

94 ECS IAM for S3

Global condition keys Type Description

aws:RequestTag/ tag-key String Checks that the tag key-value pair is present in an
AWS request.

aws:ResourceTag/ tag-key String Checks that the tag key-value pair is attached to the
resource.

aws:SourceIp IpAddr To check the IP address of the requester

aws:TagKeys String,

ForAllValues:String

ForAnyValue: String

This context key is a list of tag keys without values

aws:TokenIssueTime Date Checks the date and time that temporary security
credentials were issued.

aws:principaltype String Indicates the type of principal making the request.
● Root user is Account.
● IAM user is User.
● Legacy object user is ECSUser.
● SAML or Assumed role user is AssumedRole.

aws:userid String Based on authorized user access is set to the
following:
● Root user ARN if root user is requester.
● IAM user unique id IAM user is requester.
● If SAML federated user is requester, it is set to the

role-id:caller-specified-role-name
● If assumed role user is requester, it is set to the

role-id:caller-specified-role-name
role-id: is the unique id of role
caller-specified-role-name: is the
RoleSessionName in AssumeRole request or the
name attribute value in SAML assertion passed to
AssumeRoleWithSAML request.

aws:username String Based on authorized user access, if requester is an
IAM user, it is set to the IAM username otherwise it is
not set.

IAM condition keys Type Description

iam:PermissionsBoundary String Checks that the specified policy is attached as
permissions boundary on the IAM principal resource.

iam:PolicyARN ARN Checks the ARN of a managed policy in requests that
involve a managed policy.

iam:ResourceTag/ key-name String Checks that the tag attached to the IAM entity (user or
role) matches the specified key name and value.

STS and SAML condition keys Type Description

saml:aud String An endpoint URL to which SAML assertions are
presented. The value for this key comes from the SAML
Recipient field in the assertion, not the Audience
field.

saml:edupersonorgdn String This is an eduPerson attribute in SAML assertion.

saml:iss String The issuer, which is represented by a URN.

saml:namequalifier String This contains a hash value that represents the
combination of the saml:doc and saml:iss values.
It is used as a namespace qualifier; the combination

ECS IAM for S3 95

STS and SAML condition keys Type Description

of saml:namequalifier and saml:sub uniquely
identifies a user.

saml:sub String This is the subject of the claim, which includes a
value that uniquely identifies an individual user within an
organization.

saml:sub_type String This key can have the value persistent , transient ,
or consist of the full Format URI from the Subject and
NameID elements used in your SAML assertion. A value
of persistent indicates that the value in saml:sub
is the same for a user between sessions. If the value is
transient , the user has a different saml:sub value for
each session.

S3 condition keys Description

s3:x-amz-acl Specifies the canned ACL in the request.

s3:x-amz-grant- permission Specifies permission for the following access.
● read
● write
● read-acp
● write-acp
● full-control

s3:x-amz-copy-source Enables restricting copy source to a specific bucket, folder, or object.

s3:x-amz-metadata-directive Specifies certain behavior to be enforced during object uploads (COPY vs
REPLACE).

s3:x-amz-server-side-encryption Specifies that the request should contain this header to ensure that the uploads
are stored encrypted.

s3:VersionId Limits access to specific versions of object.

s3:LocationConstraint Using this condition key, you can restrict a user to create a bucket in a specific
AWS Region.

s3:delimiter Used to require the requester to specify delimiter parameter.

s3:max-keys Limits ListBucket requests to the set s3:max-keys value.

s3:prefix Limits ListBucket and ListBucketVersions to specific prefix.

s3:ExistingObjectTag/ <tag-key> Using this condition key, you can limit the permission for the
s3:PutObjectAcl action to only on objects that have a specific tag key and
value.

s3:RequestObjectTagKeys Using this condition key, you can limit permission for the s3:PutObject
action by restricting the object tags allowed in the request.

s3:RequestObjectTag/ <tag-key> Using this condition key, you can limit permission for the s3:PutObject
action by restricting the object tags allowed in the request.

ECS IAM limitations on entities and objects
ECS IAM has certain limitations on its resources such as naming the entities, characters to be used for the identities, number of
policies to be attached to an entity, and the number of resources that can be linked to an entity.

NOTE: Paths are not supported for IAM entities.

96 ECS IAM for S3

ECS IAM entity name limits

Resource Limits

Names of users, groups, roles, and
managed policies

● Must be unique within the namespace.
● Must be alphanumeric and it may include any of these special characters: Plus (+),

equal (=), comma (,), period (.), at (@), underscore (_), and hyphen (-).

NOTE: These names are case insensitive.

Inline policy names ● Must be unique to the user, group, or to the role that they are embedded in.
● Can contain any Basic Latin (ASCII) characters except these special characters:

Backward slash (\), forward slash (/), asterisk (*), question mark (?), and space.
These characters are reserved according to the RFC (Request for Comments)
3986 Internet standard.

Policy documents Can contain these Unicode characters: horizontal tab (U+0009), linefeed (U+000A),
carriage return (U+000D), and characters in the range from U+0020 to U+00FF.

ECS IAM entity object limits

Resource Limit

Users in a namespace 500

Groups in a namespace 100

Roles in a namespace 200

Customer-managed policies in a namespace 500

ECS IAM users in a group Equal to user quota in namespace

Managed policies that are attached to an ECS IAM group 10

Managed policies that are attached to an ECS IAM role 10

Managed policies that are attached to an ECS IAM user 10

ECS IAM entities limits

Resource Limit

Access keys that are assigned to an ECS IAM user 2

Access keys that are assigned to the namespace root user 2

Groups an ECS IAM user can be a member of 10

Identity providers (IdPs) associated with an ECS IAM SAML
provider object

1

Keys per SAML provider 1

Permissions boundaries for an ECS IAM user 1

Permissions boundaries for an ECS IAM role 1

SAML providers in an AWS account 10

Tags that can be attached to an ECS IAM user 50

Tags that can be attached to an ECS IAM role 50

Versions of a managed policy that can be stored 5

ECS IAM for S3 97

https://tools.ietf.org/html/rfc3986#section-2.2

ECS IAM entity character limits

Description Limit

Path Only the character slash (/) is supported.

User name 64 characters

Group name 128 characters

Role name 64 characters

Tag key 128 characters

Tag value 256 characters
NOTE: Tag values can be empty. That is, tag values can
have a length of 0 characters.

Unique IDs created by ECS IAM 128 characters

Policy name 128 characters

Role trust policy JSON text (the policy that determines who is
allowed to assume the role)

2,048 characters

Role session name 64 characters

Max role session duration 12 hours

For inline policies You can add as many inline policies as you want to an IAM
user, role, or group. But the total aggregate policy size (the
sum size of all inline policies) per entity cannot exceed the
following limits:
● User policy size cannot exceed 2,048 characters.
● Role policy size cannot exceed 10,240 characters.
● Group policy size cannot exceed 5,120 characters.

NOTE: IAM does not count white space when calculating
the size of a policy against these limitations.

For managed policies ● You can add up to 10 managed policies to an IAM user,
role, or group.

● The size of each managed policy cannot exceed 6,144
characters.

NOTE: IAM does not count white space when calculating
the size of a policy against these limitations.

For session policies ● You can pass only one inline policy or specify up to 10
managed policy ARNs when assuming a role.

● The size of each session policy cannot exceed 2,048
characters.

ECS IAM access management
ECS IAM access is managed by creating policies and ACLs, and associating them with ECS resources and identities.

ECS IAM Policies

Policies specify what permissions are granted to an ECS entity which needs to access a resource.

For example, policies can:

● Specify actions on a resource.
● Identify resources.

98 ECS IAM for S3

● Identify principals that are applicable for the policies.
● Specify conditions that are applicable.

ECS IAM supports the following policy types:

Policies Description

Identity-based policies Policies that are assigned to users, groups, and roles which grant permissions to an identity.
● Inline Policies
● Managed Policies (Both ECS and Customer managed)

Resource-based policies These are inline policies that are assigned to an ECS resource that grants specified principal
permission to perform specific action on the resource.
● Bucket Policy
● Trust Policy - Is a resource-based policy that is attached to an IAM role. Trust policies

identify the principal entities that can assume the role.

Permission Boundaries Use a managed policy as the permissions boundary for an IAM entity (user or role). That policy
defines the maximum permissions that the identity-based policies can grant to an entity, but
does not grant permissions. Permissions boundaries do not define the maximum permissions
that a resource-based policy can grant to an entity.

Session policies Session policies are used with AssumeRole and AssumeRoleWithSAML APIs. Session policies
limit the permissions that the identity-based policies of a role or user grant to the session.
Session policies limit permissions for a created session, but do not grant permissions.

Access Control Lists (ACLs) ACLs are cross-account permissions policies that grant permissions to the specified principal.

NOTE: If there is an explicit deny in any policy, then the request is denied otherwise there must be a policy that explicitly

allows the request. If neither then by default the request is denied.

ACLs

This section describes the differences between the ECS S3 user ACL access with the ECS IAM S3 user ACL access.

S3 non-ECS IAM access S3 ECS IAM access

Users own buckets and objects. Buckets are owned by the namespace to which they belong and
objects are owned by the namespace to which the user that
created the object belongs.

Bucket and object owners can be changed. Buckets and object owners can never be changed.

Any user can be a non-group grantee in an ACL. Only a namespace can be a non-group grantee in an ACL.

S3 Request authorization

During the S3 request authorization process, the system evaluates permission using user, bucket, and object contexts as
needed.

Context Description

User In this context, if the requester is an ECS IAM principal, the principal must have permission from the parent
namespace to which it belongs. In this step, the subset of policies that are owned by the parent account
(also referred as the context authority) is evaluated. This subset of policies includes the user policy that the
parent attaches to the principal. If the parent also owns the resource in the request (bucket, object), then
the corresponding resource policies (bucket policy, bucket ACL, and object ACL) are also evaluated at the
same time.

Bucket In this context, ECS evaluates policies that are owned by the namespace that owns the bucket. If the
namespace that owns the object in the request is not same as the bucket owner, in the bucket context the
policies are checked to verify that the bucket owner has not explicitly denied access to the object. If there
is an explicit deny set on the object, then the request is not authorized.

ECS IAM for S3 99

Context Description

Object In this context, the requester must have permissions from the object owner to perform a specific object
operation. In this step, the object ACL is evaluated if required.

S3 bucket operation authorization

The below diagram describes how the system evaluates the authorization request for an S3 bucket operation process:

In the S3 bucket operation authorization process, at first the system evaluates whether the requester is an ECS IAM user. If
yes, then the request is evaluated against the user context and the bucket contexts. If both verifications are authorized, the
access is granted. Else, it is denied.

The below table describes the summary of access details for the same and cross account bucket operation:

Bucket owner
(account)

Requestor
(account, user)

Comments

A1 U1 The user or the bucket policy determines the access. There is no bucket ACL
check.

A1 U2 U2 needs IAM policy from A2, if A1 bucket policy does not a make a
determination, then the system checks the bucket ACL.

A1 R1 IAM policy is not relevant for root user (R1). If A1 bucket policy does not a
make a determination, then the system checks the bucket ACL.

A1 R2 IAM policy is not relevant for root user (R2). If A1 bucket policy does not a
make a determination, then the system checks the bucket ACL.

NOTE: In this table, the following legends are used:

A1 = first account, A2 = second account, U1 = user from the first account, U2 = user from the second account, R1 = root
user from the first account, and R2 = root user from the second account.

100 ECS IAM for S3

S3 object operation authorization

The below diagram describes how the system evaluates the authorization request for an S3 object operation process:

In the S3 object operation authorization process, at first the system evaluates whether the requester is an ECS IAM user. If yes,
then the request is evaluated against the user, bucket, and object contexts. If these three contexts verifications are authorized,
the access is granted. Else, it is denied.

The below table describes the summary of access details for the same and cross account bucket operation:

Bucket owner
(account)

Object owner
(account)

Requestor Comments

A1 A1 U1 Access is determined by the user and/or by the bucket
policy. No object ACL check

A1 A1 U2 U2 needs IAM policy from A2 and if A1 bucket policy does
not a make a determination, then the system checks the
object ACL

A1 A1 R1 IAM policy not relevant for R1. If A1 bucket policy does not
a make a determination, then the system checks the object
ACL

A1 A1 R2 IAM policy not relevant for R2. If A1 bucket policy does not
a make a determination, then the system checks the object
ACL

A1 A2 U1 U1 needs IAM policy or bucket policy allow. Object ACL must
allow A1 access.

A1 A2 U2 U2 needs IAM policy allow. Bucket policy should not deny.

NOTE: Bucket policy cannot allow access.

A1 A2 U3 U3 needs IAM policy allow. Bucket policy should not deny.
Object ACL must allow A3 access.

NOTE: Bucket policy cannot allow access.

A1 A2 R1 IAM policy not relevant. Bucket policy should not be deny.
Object ACL needs to allow A1 access.

NOTE: Bucket policy cannot allow access.

A1 A2 R2 IAM policy not relevant. Bucket policy should not be deny.
Object ACL must allow A2 access.

NOTE: Bucket policy cannot allow access.

A1 A2 R3 IAM policy not relevant. Bucket policy should not be deny.
Object ACL must allow A3 access.

NOTE: Bucket policy cannot allow access.

NOTE: In this table, the following legends are used:

ECS IAM for S3 101

Bucket owner
(account)

Object owner
(account)

Requestor Comments

A1 = first account, A2 = second account, A3 = third account, U1 = user from the first account, U2 = user from the second
account, U3 = user from the third account, R1 = root user from the first account, R2 = root user from the second account,
and R3 = root user from the third account.

ECS IAM and STS resources requests

The following procedure describes how the system evaluates the authorization requests on ECS IAM and STS resources within
one namespace:
1. Deny evaluation - By default, all requests are denied (implicit deny). PEM evaluates all policies within the account that

apply to the request. These include resource-based policies, permissions boundaries, role session policies, and identity-based
policies. In all these policies, enforcement code looks for a Deny statement that applies to the request (explicit deny). If the
code finds even one explicit deny that applies, the code returns a final decision of Deny. If there is no explicit deny, the
evaluation continues.

2. Resource-based policies - If the requested resource has a resource-based policy that allows the principal entity to perform
the requested action, then the code returns a final decision of Allow. If there is no resource-based policy, or if the policy
does not include an Allow statement, then the code continues. This logic can behave differently if you specify the ARN of an
IECS AM role or user as the principal of the resource-based policy. Someone can use session policies to create a temporary
credential session for that role or federated user. In that case, the effective permissions for the session might not exceed
those allowed by the identity-based policy of the user or role.

3. IAM permissions boundaries - The enforcement code then checks whether the IAM entity that is used by the principal has
a permissions boundary. If the policy that is used to set the permissions boundary does not allow the requested action, then
the request is implicitly denied. The code returns a final decision of Deny. If there is no permissions boundary, or if the
permissions boundary allows the requested action, the evaluation continues.

4. Session policies - The code then checks whether the principal entity is using a session that was assumed by passing a
session policy. You can pass a session policy while using temporary credentials for a role or federated user. If the session
policy is present and does not allow the requested action, then the request is implicitly denied. The code returns a final
decision of Deny. If there is no session policy, or if the policy allows the requested action, the code continues.

5. Identity-based policies - The code then checks the identity-based policies for the principal entity. For an IAM user, these
include user policies and policies from groups to which the user belongs. If any statement in any applicable identity-based
policies allows the requested action, then the PEM evaluation returns a final decision of Allow. If there are no statements
that allow the requested action, then the request is implicitly denied, and the code returns a final decision of DenyErrors
that is any errors that are encountered by PEM during the evaluation will throw an exception and stops evaluation.

Secure Token Service
The Security Token Service (STS) enables you to request temporary credentials, for IAM users or for other users that are
externally authenticated (SAML).

ECS IAM supports the following three STS APIs:

● AssumeRole - Provides a way for a trusted IAM user to assume a role and get temporary credentials for accessing ECS S3
and IAM resources.

NOTE: The AssumeRole API requires the standard AWS S3 authentication header for an IAM user to get

authenticated.

● AssumeRoleWithSAML - Provides a way for an external user to assume a role and get temporary credentials using SAML
assertions generated by a trusted external identity provider.

● GetFederationToken - Provides a way for the IAM user, who has permission, to get temporary security credential for
federated users.

NOTE: The temporary credentials from the AssumeRole, AssumeRoleWithSAML, and GetFederationToken APIs

consist of an access key ID, secret access key, and a session token. These temporary credentials cannot be revoked.

102 ECS IAM for S3

Accessing accounts using AssumeRole

AssumeRole returns a set of temporary security credentials that you can use to access IAM and S3 resources.

NOTE: The role trust relationship should grant permission to an entity to assume the role.

Same account access with AssumeRole

You can access the same account using AssumeRole by attaching a policy to the user (identical to the previous user in a
different account) or by adding the user as a principal directly in the role trust policy.

Method Example

Attaching a policy to the user 1. Trust policy for Role assumeRoleSameAccount in ns1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "urn:ecs:iam::ns1:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Policy is attached to the user1 in ns1 to AssumeRole:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Resource": "urn:ecs:iam::ns1:role/
assumeRoleSameAccount",
 "Effect": "Allow",
 "Sid": "VisualEditor0"
 }
]
}

Adding the user to the role trust
policy

Trust policy for Role in ns1 with an ECS IAM user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "urn:ecs:iam::ns1:user/user1"
 },
 "Action": "sts:AssumeRole"
 }
]
}

ECS IAM for S3 103

Cross account access with AssumeRole

By default, an ECS IAM user in one namespace has no access to buckets in another namespace. However, you can access
different accounts using the role trust policy through AssumeRole.

Your account must be trusted by the role to assume a role from a different account. The trust relationship is defined in the role
trust policy when the role is created. That trust policy states which accounts are allowed to delegate that access to users in the
account. Also, ensure that you have permissions that are delegated from the user account administrator. The administrator must
attach a policy that allows you to call AssumeRole for the Amazon Resource Name (ARN) of the role in the other account.

For example, your organization has multiple namespaces. From which, you segregate a staging environment from a production
environment. Certain users such as developers from the staging namespace may also want to access the production namespace
when you move the staging environment to the production.

● For this scenario, the admin creates two groups for the staging account namely Dev and QE, and each group has its own
policy.

● In the production namespace, the administrator performs the following:
○ Specifies a trust policy to the role to state that the staging account as a Principal. So that the authorized users from the

staging account can use that role.
○ Specifies which role users have read and write permissions to the productionsys bucket through a permissions policy.
○ Shares the namespace and role information with the users who need to assume the role.

● In the staging namespace, the administrator grants permission to the Dev group to assume the UpdateSys role. By doing
this, the Dev group members can switch their role to the required and permitted role. For example, the Dev group members
can switch their role to the UpdateSys role in the production namespace. Other users such as QE group members cannot
switch their role. Hence, they cannot access the productionsys bucket.

In this process, STS verifies whether the requester is a trusted entity. After verifying, it returns temporary credentials to the
authorized users to perform the required actions.

Example

1. Trust policy for Role in ns1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "urn:ecs:iam::ns2:root"
 },

104 ECS IAM for S3

Example

 "Action": "sts:AssumeRole"
 }
]
}

2. Policy that is attached to the user in ns2 to AssumeRole:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Resource": "urn:ecs:iam::ns1:role/assumeRoleCrossAccount",
 "Effect": "Allow",
 "Sid": "VisualEditor0"
 }
]
}

ECS IAM SAML support
Security Assertion Markup Language (SAML) is an open standard for exchanging authentication and authorization data between
parties, in particular, between an identity provider (IdP) and a service provider.

ECS supports integration with SAML 2.0 compliant Identity Providers (IdPs). Though other SAML 2.0 compliant Identity
Providers should work, ECS has qualified Active Directory Federation Services and Azure AD as IdP. Contact ECS Remote
Support for assistance on SAML supported IdPs.

The IdP must be able to generate SAML 2.0 Assertions with the following:

● The referral must be SAML 2.0 compliant as set out in https://datatracker.ietf.org/doc/html/rfc7522.
● The following claim attributes must be mapped in the IdP generated SAML assertion:

○ NameId: Must be formatted as a username.
○ RoleSessionName: The https://aws.amazon.com/SAML/Attributes/RoleSessionName must be mapped to the email

address of the user. Example: bloke@dell.com.
○ Roles: The https://aws.amazon.com/SAML/Attributes/Role must be mapped to the SAML Provider URN, Role URN.

Example: urn:ecs:iam::s3:saml-provider/provider1,urn:ecs:iam::s3:role/SAML-RW-Access.

ECS IAM for S3 105

https://datatracker.ietf.org/doc/html/rfc7522

SAML-compliant provider setup

ECS supports integration with SAML 2.0 compliant Identity Providers (IdPs). The IdP must be able to generate SAML 2.0. Here,
an example with ADFS is used for demonstration purpose.
● Download the Identity Provider (ADFS) metadata file. The default URL to download ADFS metadata is https://[server-

name]/FederationMetadata/2007-06/FederationMetadata.xml.
● Upload the downloaded metadata xml file when creating Identity provider for a namespace.
● To create Identity provider in the ECS Portal, perform the following:

○ Go to Manage > Identity and Access (S3) > Identity Provider.
○ Select a namespace.
○ Click NEW IDENTITY PROVIDER.

● In order to establish trust relationship between ECS and ADFS, ECS metadata xml file is required.
● To create ECS metadata file, base64 encoded Java keystore, alias that is used for the key and password is required.
● To create ECS metadata file, go to Manage > Identity and Access (S3) > SAML Service Provider Metadata. Provide

the required information as mentioned above and download the metadata file.
● Establish trust relationship between ECS and ADFS using the downloaded ECS metadata file.
● Add claim rules in ADFS to add the required elements such as NameId, RoleSessionName, and Roles to the SAML

authentication process.

106 ECS IAM for S3

AssumeRoleWithSAML

In order to use AssumeRoleWithSAML, you must configure your SAML identity provider (IdP) to issue the claims required by
ECS.
● IAM role must be created that specifies this SAML Provider in the trust policy.
● AssumeRoleWithSAML returns a set of temporary security credentials for users who have been authenticated through a

SAML authentication response.
● This operation provides a mechanism for tying an enterprise identity store or directory to role-based access without

user-specific credentials or configuration.
● Calling AssumeRoleWithSAML does not require the use of ECS security credentials. The identity of the caller is validated

by the claims that are provided in the SAML Assertions by the identity provider.
● Temporary credentials consist of an access key ID, a secret access key, and a security token.
● Following condition keys are supported in the AssumeRolePolicyDocument.

○ saml:aud
○ saml:iss
○ saml:sub
○ saml:sub_type
○ saml:edupersonorgdn
○ saml:namequalifier

Example role trust policy

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Federated":"urn:aws:iam::s3:saml-provider/provider1"
 },
 "Action":"sts:AssumeRoleWithSAML",
 "Condition":{
 "StringEquals":{
 "SAML:sub":"<Idp>\\Bob",
 "SAML:aud":"https://10.247.179.105/saml",
 "SAML:eduPersonOrgDN":[
 "ECS",
 "Atmos"
],
 "SAML:iss":"http://AD.<Idp>.emc.com/<Idp>/services/trust"
 }
 }
 }
]
}

Attributes in SAML assertion

The following attributes are required in SAML assertion.

● https://aws.amazon.com/SAML/Attributes/RoleSessionName
● https://aws.amazon.com/SAML/Attributes/Role

NOTE:

● The Role attribute must be of the format SAML Provider URN, Role URN to be used from ECS for an AD Group.

● If you must use saml:edupersonorgdn, then oid attribute must also be present in the SAML assertion as

urn:oid:1.3.6.1.4.1.5923.1.1.1.3. However, it is optional to use this attribute.

For example:

<AttributeStatement>
 <Attribute Name="https://aws.amazon.com/SAML/Attributes/RoleSessionName">
 <AttributeValue>Bob@emc.com</AttributeValue>

ECS IAM for S3 107

 </Attribute>
 <Attribute Name="https://aws.amazon.com/SAML/Attributes/Role">
 <AttributeValue>urn:ecs:iam::s3:saml-provider/provider1,urn:ecs:iam::s3:role/
<Idp>-Dev</AttributeValue>
 <AttributeValue>urn:ecs:iam::s3:saml-provider/provider1,urn:ecs:iam::s3:role/
<Idp>-Production</AttributeValue>
 </Attribute>
 <Attribute Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.3">
 <AttributeValue>ECS</AttributeValue>
 </Attribute>
 </AttributeStatement>

User-specific access using SAML keys

It is recommended to specify permissions based on the users identity when creating access policies in ECS IAM.

As to create policies that contain user-specific information, the user identity should be available in SAML keys. The following
SAML keys can be used in policy conditions to create unique user identifiers.

SAML keys Description

saml:namequalifier A hash value based on the concatenation of the Issuer response value (saml:iss) and a
string with the ECS namespace (account ID) and the friendly name (the last part of the
ARN) of the SAML provider in IAM. The namespace (account ID) and provider name must be
separated by a '/' as in "123456789012/provider_name".

The combination of NameQualifier and Subject can be used to uniquely identify
a federated user. The following pseudocode shows how this value is calculated. In this
pseudocode, "+" indicates concatenation, SHA1 represents a function that produces a message
digest using SHA-1, and Base64 represents a function that produces Base-64 encoded version
of the hash output.

Base64 = (SHA1 ("https://example.com/saml" + "ECSNamespace" + "/SamlProvider"))

saml:sub This is the subject of the claim, which includes a value that
uniquely identifies an individual user within an organization. For example,
_3e52ef03414f3464d2461c00ebae0152c25fb88bbc.

saml:sub_type This key can be persistent, transient, or the full Format URI from the Subject and NameID
elements used in your SAML assertion. A value of persistent indicates that the value in
saml:sub is the same for a user across all sessions. If the value is transient, the user has
a different saml:sub value for each session.

IAM Policy

The following example shows a permission policy that uses the preceding keys to grant permissions to a user-specific
folder in Amazon S3. The policy assumes that the Amazon S3 objects are identified using a prefix that includes
both saml:namequalifier and saml:sub. Notice that the Condition element includes a test to be sure that
saml:sub_type is set to persistent. If it is set to transient, the saml:sub value for the user can be different for each
session, and the combination of values should not be used to identify user-specific folders.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::exampleECSBucket/backup/${saml:namequalifier}/${saml:sub}",
 "arn:aws:s3:::exampleECSBucket/backup/${saml:namequalifier}/${saml:sub}/*"
],
 "Condition": {"StringEquals": {"saml:sub_type": "persistent"}}
 }
}

108 ECS IAM for S3

Example with sample values

● Create a role using AssumeRoleWithSAML. See AssumeRoleWithSAML for more information.

● Attach an IAM policy to this role as below.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::exampleECSBucket/backup/${saml:namequalifier}/${saml:sub}",
 "arn:aws:s3:::exampleECSBucket/backup/${saml:namequalifier}/${saml:sub}/*"
],
 "Condition": {"StringEquals": {"saml:sub_type": "persistent"}}
 }
}

The values in the above example are as follows:

● saml:iss = http://AD.adfs.emc.com/adfs/services/trust. See ECS IAM supported condition keys for the list of SAML
condition keys.

● account = s3
● providername = provider1
● saml:sub = ADFS\Bob
● Base64 = SHA1 ("http://AD.adfs.emc.com/adfs/services/trust " + "s3" + "/provider1")
● SHA1 = BB9445BB2D9C57D519ACEBD08EFD428076522D5B
● Base64 of BB9445BB2D9C57D519ACEBD08EFD428076522D5B is u5RFuy2cV9UZrOvQjv1CgHZSLVs=.

GetFederationToken

GetFederationToken provides a set of temporary security credentials (consisting of an access key ID, a secret access key,
and a security token) to a federated IAM user for use only in S3 service. It is a part of STS along with AssumeRole and
AssumeRoleWithSAML.

GetFederationToken permissions

You can specify maximum of 10 managed policies for permissions for GetFederationToken API. If you have not specified
policies, the temporary security credentials become ineffective. However, if the resource policy has permission to access the
resource, user can access the resource using the temporary security credentials.

When you pass session policy (inline or managed policy) the system restricts permissions that are available to the IAM user by
allowing only a subset of the permissions that are granted to the IAM user. The passed policy cannot grant more permissions
than those granted to the IAM user. The final permissions for the federated user are the most restrictive set based on the
intersection of the passed policy and the IAM user policy.

The following figures show a visual representation of how the policies interact to determine permissions for the temporary
security credentials.

ECS IAM for S3 109

Figure 2. GetFederationToken - determining the policy permissions

NOTE: The IAM user needs the policy attached to get permission to use the GetFederationToken API. The IAM

user also needs allow action on sts:TagSession to get permission to add tags on STS session. You cannot use these

credentials in IAM operations and STS operations.

GetFederationToken request parameters

This section lists summary of GetFederationToken API request parameters:

Table 29. Request parameters of GetFederationToken API

Name Description

DurationSeconds The duration in seconds that the session should last. Acceptable durations for federation
sessions range from 900 seconds (15 minutes) to 129,600 seconds (36 hours) with 43,200
seconds (12 hours) as the default.
● Type: Integer
● Valid Range: Minimum value of 900 and maximum value of 129600
● Required: No

Name The name of the federated user that is used as an identifier for the temporary security
credentials.
● Type: String
● Length Constraints: Minimum length of 2 and maximum length of 32
● Pattern: [\w+=,.@-]*
● Required: Yes

Tags ● A list of session tags and each session tag consists of a key name and an associated
value.

● You can pass a session tag with the same key as a tag that is already attached to the
user you are federating. When you do so, session tags override a user tag with the same
key.

● Tag key value pairs are not case-sensitive, but case is preserved. You cannot
have separate Department and department tag keys. For example, the user has the
Department=Marketing tag and you pass the department=engineering session tag.
Department and department are not saved as separate tags, and the session tag that
is passed in the request takes precedence over the user tag.

● When you use the temporary credentials that the GetFederationToken operation
returned, the session principal tags include the user tags and the passed session tags.

● You can pass up to 50 session tags.

Policy An IAM Policy is passed with the GetFederationToken call and evaluated along with
the policy or policies that are attached to the IAM user whose credentials are used to call
GetFederationToken.

● Type: String

110 ECS IAM for S3

Table 29. Request parameters of GetFederationToken API (continued)

Name Description

● Length Constraints: Minimum length of 1 and maximum length of 2048
● Pattern: [\u0009\u000A\u000D\u0020-\u00FF]+
● Required: No

PolicyArns The URNs of the IAM-managed policies that you want to use as a managed session policy.
The policies must exist in the same account as the IAM user that is requesting federated
access. You can pass up to 10 managed policies to use as managed session policies. The
plaintext that you use for both inline and managed session policies should not exceed 2,048
characters.
● Type: Array of objects
● Required: No

Example usages

● A sample inline or managed policy that can be attached to an IAM user to grant GetFederationToken and TagSession
permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "sts:TagSession",
 "sts:GetFederationToken"
],
 "Resource": "*"
 }
]
}

● GetFederationToken using AWS CLI:

./aws sts --profile ecsiamuser1 get-federation-token --name BobTemp --policy file://
s3ReadOnlyPolicy --endpoint-
url=https://IP:4443/sts --no-verify-ssl
{
 "Credentials": {
 "AccessKeyId": "ASIA20B9DB02921B9D93",
 "SecretAccessKey": "PXqhhj5gMMFY0aSBNXoaP_xWgfJXFlkpdMySmqnY8Fk",
 "SessionToken":
"CgJzMxIUQUlEQUU5QUIwNzY5NzExMkEzMTEqFEFTSUEyMEI5REIwMjkyMUI5RDkzMlBNYXN0ZXJLZXlSZWNvc
mQtM2RhNGUyZ
TZjMjBjYjM4NjQ1ZWUyZWI5ZDVlMWM1MTgyYmEwYWI0NzViMTA4OGFhOTQwZjMyMmUwMjVhM2NkNTipg4D59C9
C5wF7CiAgICAiVmVyc2lvbiI6ICIyMDEyLTE
wLTE3IiwKICAgICJTdGF0ZW1lbnQiOiBbCiAgICAgICAgewogICAgICAgICAgICAiRWZmZWN0IjogIkFsbG93I
iwKICAgICAgICAgICAgIkFjdGlvbiI6IFsKI
CAgICAgICAgICAgICAgICJzMzpHZXQqIiwKICAgICAgICAgICAgICAgICJzMzpMaXN0KiIKICAgICAgICAgICA
gXSwKICAgICAgICAgICAgIlJlc291cmNlIjo
gIioiCiAgICAgICAgfQogICAgXQp9CgpohMX_kAZyHXVybjplY3M6aWFtOjpzMzp1c2VyL2lhbXVzZXIxegdCb
2JUZW1w",
 "Expiration": "2022-03-03T09:32:52+00:00"
 },
 "FederatedUser": { "FederatedUserId": "s3:BobTemp",
 "Arn": "urn:ecs:sts::s3:federated-user/BobTemp"
 },
 "PackedPolicySize": 11
}

● A sample usage of temporary credentials to access S3 API:

 lrmk # export AWS_ACCESS_KEY_ID=ASIA20B9DB02921B9D93
 lrmk # export AWS_SECRET_ACCESS_KEY=PXqhhj5gMMFY0aSBNXoaP_xWgfJXFlkpdMySmqnY8Fk
 lrmk # export
AWS_SESSION_TOKEN=CgJzMxIUQUlEQUU5QUIwNzY5NzExMkEzMTEqFEFTSUEyMEI5REIwMjkyMUI5RDkzMlBN
YXN0ZXJLZXlSZ

ECS IAM for S3 111

WNvcmQtM2RhNGUyZTZjMjBjYjM4NjQ1ZWUyZWI5ZDVlMWM1MTgyYmEwYWI0NzViMTA4OGFhOTQwZjMyMmUwMjV
hM2NkNTipg4D5
9C9C5wF7CiAgICAiVmVyc2lvbiI6ICIyMDEyLTEwLTE3IiwKICAgICJTdGF0ZW1lbnQiOiBbCiAgICAgICAgew
ogICAgICAgICA
gICAiRWZmZWN0IjogIkFsbG93IiwKICAgICAgICAgICAgIkFjdGlvbiI6IFsKICAgICAgICAgICAgICAgICJzM
zpHZXQqIiwKIC
AgICAgICAgICAgICAgICJzMzpMaXN0KiIKICAgICAgICAgICAgXSwKICAgICAgICAgICAgIlJlc291cmNlIjog
IioiCiAgICAgI
CAgfQogICAgXQp9CgpohMX_kAZyHXVybjplY3M6aWFtOjpzMzp1c2VyL2lhbXVzZXIxegdCb2JUZW1w
 lrmk # ./aws s3api get-object --bucket bucket1 --key obj1 outfile --endpoint-
url=http://$IP:9020
 -
-no-verify-ssl
 {
 "LastModified": "2022-09-12T20:27:32+00:00",
 "ContentLength": 11,
 "ETag": "\"093ec021131c823e8ab89c78e458f72a\"",
 "ContentType": "application/octet-stream",
 "ServerSideEncryption": "AES256",
 "Metadata": {}
}

● A sample resource policy with ARN for the federated user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "urn:ecs:sts::s3:federated-user/BobTemp"
]
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::seetbucket/*",
 "arn:aws:s3:::seetbucket"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/department": "Engineering"
 }
 }
 }
]
}

● A sample resource policy with federated ID in condition:

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Principal": {
 "AWS": "urn:ecs:iam::s3:root"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::bucket1/*",
 "arn:aws:s3:::bucket1"
],
 "Condition": {

112 ECS IAM for S3

 "StringEquals": {
 "aws:userid": "s3:iamu1temp"
 }
 }
 }
]
}

ECS IAM for S3 113

OpenStack Swift
This section describes the supported methods, the ECS extensions, and the mechanism for authentication.

ECS supports the OpenStack Swift API and can be used with applications that support that API. This section describes
supported methods, the ECS extensions, and the mechanism for authentication.

Topics:

• OpenStack Swift support in ECS
• OpenStack Swift supported operations
• Swift extensions
• Swift byte range extensions
• Retention
• File system enabled
• S3 and Swift interoperability
• OpenStack Swift authentication
• Authorization on Container
• ECS Swift error codes

OpenStack Swift support in ECS
ECS includes support for the OpenStack Swift API and can replace Swift in an OpenStack environment. This part describes the
supported operations and the mechanisms for authorization and authentication.

The OpenStack Swift Service is made available on the following ports.

Table 30. Port details

Protocol Ports

HTTP 9024

HTTPS 9025

Examples showing the use of the OpenStack Swift API can be found in OpenStack API Examples.

In an OpenStack environment, ECS can be used as a replacement for the OpenStack Swift component or alongside an
existing OpenStack Swift installation. While ECS can be used with any OpenStack distribution, it has been tested with Mirantis
OpenStack 9.1. Please note that ECS has been tested as a Swift replacement for user object storage and not as a Glance
backend.

Using OpenStack with ECS requires you to configure ECS so that it can authenticate OpenStack users. You can see
Authentication using ECS Keystone V3 integration for information about configuring authentication.

OpenStack Swift supported operations
The following sections list the OpenStack REST API requests that are supported, and unsupported by ECS.

This information is taken from the Object Storage API V1 section of the OpenStack API Reference documentation.

4

114 OpenStack Swift

http://docs.openstack.org/api/openstack-object-storage/1.0/content/ch_object-storage-dev-troubleshooting.html
http://developer.openstack.org/api-ref-objectstorage-v1.html

Supported OpenStack Swift calls

Table 31. OpenStack Swift supported calls

Method Path Description

GET v1/{account} Retrieve a list of existing storage containers ordered by
names.

POST v1/{account} Create or update an account metadata by associating custom
metadata headers with the account level URI. These headers
must take the format X-Account-Meta-*.

GET v1/{account}/{container} Retrieve a list of objects stored in the container.

PUT v1/{account}/{container} Create a container.

DELETE v1/{account}/{container} Delete an empty container.

POST v1/{account}/{container} Create or update the arbitrary container metadata by
associating custom metadata headers with the container level
URI. These headers must take the format X-Container-Meta-
*.

HEAD v1/{account}/{container} Retrieve the container metadata. Currently does not include
object count and bytes used. User requires administrator
privileges.

GET v1/{account}/{container}/{object} Retrieve the object's data.
NOTE: GET range on a Static Large Object (SLO) will not
work if the segments were created prior to ECS 3.0.

PUT v1/{account}/{container}/{object} Write, or overwrite, an object's content and metadata. Used
to copy existing object to another object using X-Copy-From
header to designate source. For a Dynamic Large Object
(DLO) or a SLO the object can be a manifest. Refer to Swift's
documentation for details.

DELETE v1/{account}/{container}/{object} Remove an object from the storage system permanently. In
combination with the COPY command you can use COPY then
DELETE to effectively move an object.

HEAD v1/{account}/{container}/{object} Retrieve object metadata and other standard HTTP headers.

POST v1/{account}/{container}/{object} Set and overwrite arbitrary object metadata. These metadata
must take the format X-Object-Meta-*. X-Delete-At or X-
Delete-After for expiring objects can also be assigned by this
operation. But other headers such as Content-Type cannot be
changed by this operation.

Table 32. Additional features

Feature Notes

Temporary URLs ECS supports the use of temporary URLs to enable users to be given access
to objects without needing credentials. More information can be found Swift's
documentation.

Unsupported OpenStack Swift calls

Table 33. OpenStack Swift unsupported calls

Method Path Description

COPY v1/{account}/{container}/{object} Copy operation can be achieved using PUT v1/{account}/
{container}/{object} with X-Copy-From header.

OpenStack Swift 115

http://docs.openstack.org/developer/swift/api/large_objects.html#static-large-objects
https://docs.openstack.org/kilo/config-reference/content/object-storage-tempurl.html

Table 33. OpenStack Swift unsupported calls (continued)

Method Path Description

HEAD v1/{account} Retrieve the account metadata. Not fully supported as returns
zero for the bytes stored (X-Account-Bytes-Used).

Swift extensions
ECS supports a number of extensions to the Swift API.

The extensions and the APIs that support them are listed below.

● Swift byte range extensions
● Retention
● File system enabled

Swift byte range extensions
The following ECS extensions are provided for performing the following operations on Swift byte ranges:

● Updating a byte range within an object
● Overwriting part of an object
● Appending data to an object
● Reading multiple byte ranges within an object

Updating a byte range within an object

You can use ECS extensions to the Swift protocol to update a byte range within an object.

Partially updating an object is useful in many cases. For example, to modify a binary header stored at the beginning of a large
file. On Swift or other Swift compatible platforms, it is necessary to send the full file again.

The following example demonstrates use of the byte range update. In the example, object1 has the value The quick
brown fox jumps over the lazy dog.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43

The quick brown fox jumps over the lazy dog.

To update a specific byte range within this object, the Range header in the object data request must include the start and end
offsets of the object that you are updating.
The format is: Range: bytes=<startOffset>-<endOffset>.

In the example below, the PUT request includes the Range header with the value bytes=10-14 indicating that bytes
10,11,12,13,14 are replaced by the value sent in the request. Here, the new value green is being sent.

PUT /container1/object1 HTTP/1.1
Content-Length: 5

116 OpenStack Swift

Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress

green

HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0
Date: Mon, 12 Mar 2018 20:15:16 GMT

When reading the object again, the new value is now The quick green fox jumps over the lazy dog. A specific
byte range within the object is updated, replacing the word brown with the word green.

GET /container1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:16:00 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43

The quick green fox jumps over the lazy dog.

Overwriting part of an object

You can use ECS extensions to the Swift protocol to overwrite part of an object.

To overwrite part of an object, you provide the data to be written and the starting offset. The data in the request is written
starting at the provided offset. The format is: Range: <startingOffset>-
For example, to write the data brown cat starting at offset 10, you issue the following PUT request:

PUT /container1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress

brown cat

HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b
Content-Length: 0
Date: Mon, 12 Mar 2018 20:51:41 GMT

OpenStack Swift 117

When the object is retrieved, part of the data is replaced at the provided starting offset (green fox is replaced with brown
cat) and the final value is: The quick brown cat jumps over the lazy dog and cat.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51

The quick brown cat jumps over the lazy dog and cat.

Note that when you overwrite existing parts of an object, the size and numbers of the new parts is added to the size and
numbers of the existing parts you overwrote. For example, in a bucket that has one part that is 20 KB in size, you overwrite
5 KB. When you query the bucket using GET /object/billing/buckets/{namespace}/{bucketName}/info, the
output shows total_mpu_size = 25 KB (not 20 KB) and total_mpu_parts = 2 (not 1).

Appending data to an object

You can use ECS extensions to the Swift protocol to append data to an object.

There may be cases where you need to append to an object, but determining the exact byte offset is not efficient or useful. For
this scenario, ECS provides the ability to append data to the object without specifying an offset (the correct offset is returned
to you in the response). For example, to append lines to a log file, on Swift or other Swift compatible platforms, you must send
the full log file again.

A Range header with the special value bytes=-1- is used to append data to an object. In this way, the object is extended
without knowing the existing object size. The format is: Range: bytes=-1-
A sample request showing appending to an existing object using a Range value of bytes=-1- is shown in the following
example. Here the value and cat is sent in the request.

PUT /container1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 12 Mar 2018 20:46:01 GMT

When the object is retrieved, and cat is appended, and you see the full value: The quick green fox jumps over the
lazy dog and cat.

GET /container1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:56 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress

118 OpenStack Swift

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51

The quick green fox jumps over the lazy dog and cat.

Reading multiple byte ranges within an object

You can use ECS extensions to the Swift protocol to read multiple byte ranges within an object.

Reading multiple parts of an object is very useful in many cases. For example, to get several video parts. On Swift or other Swift
compatible platforms, it is necessary to send a different request for each part

To read two specific byte ranges within the object named object1, you issue the following GET request for Range:
bytes==4-8,41-44. The read response is the words quick and lazy.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 206 Partial Content
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
Content-Length: 230

--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Retention
The ECS Swift head supports retention of objects to prevent them being deleted or modified for a specified period of time. This
is an ECS extension and is not available in the standard Swift API.

Retention can be set in the following ways:

Retention period
on object

Stores a retention period with the object. The retention period is set using an x-emc-retention-
period header on the object.

Retention policy
on object

A retention policy can be set on the object and the period associated with the policy can be set for the
namespace. This enables the retention period for a group of objects to be set to the same value using a
policy and can be changed for all objects by changing the policy. The use of a policy provides much more
flexibility than applying the retention period to an object. In addition, multiple retention policies can be set
for a namespace to allow different groups of objects to have different retention periods.

The retention policy applied to an object using an x-emc-retention-policy header on the object
and the policy retention period must be set using the ECS Management REST API (or from the ECS
Portal).

OpenStack Swift 119

Retention period
on bucket

A retention period stored against a bucket sets a retention period for all objects, with the object level
retention period or policy used to provide an object-specific setting where a longer retention is required.
The retention period is set using an x-emc-retention-period header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket retention period or the object period, set
directly on the object or using the object retention policy, is used to determine whether the operation can be performed.

File system enabled
Swift buckets can also be file system (FS) enabled so that files written using the Swift protocol can be read using file protocols,
such as NFS, and vice-versa.

Enabling FS access

You can enable file system access using the x-emc-file-system-access-enabled header when creating a bucket using
the Swift protocol. File system access can also be enabled when creating a bucket from the ECS Portal (using the ECS
Management REST API).

Cross-head support for FS

Cross-head support refers to accessing objects written using one protocol using a different, ECS-supported protocol. Objects
written using the Swift head can be read and written using NFS file system protocols.

An important aspects of cross-head support is how object/file permissions translate between protocols and, in the case of file
system access, how user and group concepts translate between object and file protocols.

You can find more information on the cross-head support with file systems in the ECS Administration Guide which is available
from the https://www.dell.com/support/.

S3 and Swift interoperability
S3 and Swift protocols can interoperate so that S3 applications can access objects in Swift buckets and Swift applications can
access objects in S3 buckets.

For details, see S3 and Swift interoperability.

NOTE: S3 and Swift interoperability is not compatible with the use of bucket policies. Bucket policies apply only to access

using the S3 head and are not enforced when accessing a bucket using the Swift API.

OpenStack Swift authentication
ECS provides support for different versions of the OpenStack Swift Authentication protocol.

v1 ECS enables object users to authenticate with the ECS Swift service and obtain an authentication token
that can be used when making subsequent API calls to the ECS Swift service. See OpenStack Version 1
authentication.

v2 ECS enables object users to authenticate with the ECS Swift service to obtain a scoped token, that is, a
token associated with a tenant (equivalent to a project), that can be used when making subsequent API
calls to the ECS Swift service. See OpenStack Version 2 authentication

v3 ECS validates Keystone V3 users that present tokens scoped to a Keystone project. See Authentication
using ECS Keystone V3 integration.

For v1 and v2 protocols, access to the ECS object store using the OpenStack Swift protocol requires an ECS object user
account and a Swift password.

For v3, users are created, and assigned to projects and roles, outside of ECS using a Keystone V3 service. ECS does not
perform authentication, but validates the authentication token with the Keystone V3 service.

120 OpenStack Swift

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Assigning Swift credentials to ECS object users is described in Create Swift users in the ECS Portal.

Create Swift users in the ECS Portal

ECS object users can be given credentials to access the ECS object store using the OpenStack Swift protocol.

● This operation requires the System Administrator or Namespace Administrator role in ECS.
● A System Administrator can assign new object users into any namespace.
● A Namespace Administrator can assign new object users into the namespace in which they are the administrator.
● The Swift user must belong to an OpenStack group. A group is a collection of Swift users that have been assigned a role

by an OpenStack administrator. Swift users that belong to the admin group can perform all operations on Swift buckets
(containers) in the namespace to which they belong. You should not add ordinary Swift users to the admin group. For Swift
users that belong to any group other than the admin group, authorization depends on the permissions that are set on the
Swift bucket. You can assign permissions on the bucket from the OpenStack Dashboard UI or in the ECS Portal using the
Custom Group ACL for the bucket. For more information on custom group ACLs and adding object users to ECS, see the
ECS Administration Guide which is available from the https://www.dell.com/support/ .

1. In the ECS Portal, select Manage > Users.

2. On the User Management page, you can create a new object user who will access the ECS object store through the Swift
object protocol in one of two ways:

a. Click New Object User to create a new object user.

● On the New Object User page, in the Name field, type a name for the object user.
● In the Namespace field, select the namespace to which the user belongs.
● Click Next to Add Passwords.

b. Click Edit in the Actions column beside an existing user and add a Swift password to the existing user.

3. On the Update Passwords for User <username> page, in the Swift Groups field, enter the Swift group to which the
user belongs.

If you specify the admin group, users will automatically be able to perform all container operations. If you specify a different
group, that group must be given permissions on the container. Refer to Authorization on Container for more information on
container authorization.

4. In the Swift password field, type a password for the Swift user.

5. Click Set Groups & Password.

OpenStack Version 1 authentication

You can authenticate with the ECS OpenStack Swift service using V1 of the authentication protocol.

1. Acquire a UID and password for an ECS object user.

You can do this from the ECS Portal (see Create Swift users in the ECS Portal) or you can call the following ECS REST API
to generate a password.

Request:

PUT /object/user-password/myUser@emc.com
 <user_password_create>
 <password>myPassword</password>
 <namespace>EMC_NAMESPACE</namespace>
 </user_password_create>

Response:

HTTP 200

2. Call the OpenStack authentication REST API shown below. Use port 9024 for HTTP, or port 9025 for HTTPS.

Request:

GET /auth/v1.0
 X-Auth-User: myUser@emc.com
 X-Auth-Key: myPassword

OpenStack Swift 121

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Response:

HTTP/1.1
 204 No
 Content
 Date: Mon, 12 Nov 2010 15:32:21 GMT
 Server: Apache

 X-Storage-Url: https://{hostname}/v1/account
 X-Auth-Token: ECS_e6384f8ffcd849fd95d986a0492ea9a6
 Content-Length: 0

If the UID and password are validated by ECS, the storage URL and token are returned in the response header. Further requests
are authenticated by including this token. The storage URL provides the host name and resource address. You can access
containers and objects by providing the following X-Storage-Url header:

X-Storage-Url: https://{hostname}/v1/{account}/{container}/{object}

The generated token expires 24 hours after creation. If you repeat the authentication request within the 24 hour period using
the same UID and password, OpenStack will return the same token. Once the 24 hour expiration period expires, OpenStack will
return a new token.

In the following simple authentication example, the first REST call returns an X-Auth-Token. The second REST call uses that
X-Auth-Token to perform a GET request on an account.

$ curl -i -H "X-Storage-User: tim_250@sanity.local" -H "X-Storage-Pass:
1fO9X3xyrVhfcokqy3U1UyTY029gha5T+k+vjLqS"

http://ecs.yourco.com:9024/auth/v1.0

 HTTP/1.1 204 No Content
 X-Storage-Url: http://ecs.yourco.com:9024/v1/s3
 X-Auth-Token: ECS_8cf4a4e943f94711aad1c91a08e98435
 Server: Jetty(7.6.4.v20120524)

$ curl -v -X GET -s -H "X-Auth-Token: 8cf4a4e943f94711aad1c91a08e98435"
 http://ecs.yourco.com:9024/v1/s3

* About to connect() to ecs.yourco.com port 9024 (#0)
 * Trying 203.0.113.10...
 * Adding handle: conn: 0x7f9218808c00
 * Adding handle: send: 0
 * Adding handle: recv: 0
 * Curl_addHandleToPipeline: length: 1
 * - Conn 0 (0x7f9218808c00) send_pipe: 1, recv_pipe: 0
 * Connected to ecs.yourco.com (203.0.113.10) port 9024 (#0)

 > GET /v1/s3 HTTP/1.1
 > User-Agent: curl/7.31.0
 > Host: ecs.yourco.com:9024
 > Accept: */*
 > X-Auth-Token: 8cf4a4e943f94711aad1c91a08e98435
 >
 < HTTP/1.1 204 No Content
 < Date: Mon, 16 Sep 2013 19:31:45 GMT
 < Content-Type: text/plain
 * Server Jetty(7.6.4.v20120524) is not blacklisted
 < Server: Jetty(7.6.4.v20120524)
 <

 * Connection #0 to host ecs.yourco.com left intact

OpenStack Version 2 authentication

ECS includes limited support for OpenStack Version 2 (Keystone) authentication.

122 OpenStack Swift

ECS provides an implementation of the OpenStack Swift V2 identity service which enables a Swift application that uses V2
authentication to authenticate users. Users must be ECS object users who have been assigned OpenStack Swift credentials
which enable them to access the ECS object store using the Swift protocol.

Only tokens that are scoped to an ECS namespace (equivalent to a Swift project) can be used to make Swift API calls. An
unscoped token can be obtained and used to access the identity service in order to retrieve the tenant identity before obtaining
a token scoped to a tenant and a service endpoint.

The scoped token and service endpoint can be used to authenticate with ECS as described in the previous section describing V1
authentication.

The two articles listed below provide important background information.

● OpenStack Keystone Workflow and Token Scoping
● Authenticate for Admin API

1. To obtain an unscoped token from ECS you can use the /v2.0/tokens API and supply a username and password for the
ECS Swift service.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-Type: application/json" -d
'{"auth":
{"passwordCredentials" : {"username" : "swift_user", "password" : "123"}}}' http://
203.0.113.10:9024/v2.0/tokens

The response looks like the following. The unscoped token is preceded by id and tokens generated by ECS are preceded by
the "ecs_" prefix.

{"access": {"token":
{"id":"ecs_d668b72a011c4edf960324ab2e87438b","expires":"1376633127950"l},"user":
 {"name": "sysadmin", "roles":[], "role_links":[]
},"serviceCatalog":[] }} , }

2. Retrieve tenant information associated with the unscoped token.

curl -v http://203.0.113.10:9024/v2.0/tenants -H 'X-Auth-Token:
d668b72a011c4edf960324ab2e87438b'

The response looks like the following.

{"tenants_links":[], "tenants":[{"description":"s3","enabled":true, "name": "s3"}]}

3. Retrieve the scoped token along with the storageUrl.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-Type: application/json" -d
'{"auth": {"tenantName" : "s3",
 "token":{"id" : ecs_d668b72a011c4edf960324ab2e87438b"}}}'
http://203.0.113.10:9024/v2.0/tokens

An example response follows. The scoped token is preceded by id.

{"access":{"token":{"id":"ecs_baf0709e30ed4b138c5db6767ba76a4e
","expires":"1376633255485","tenant":{"description":"s3","enabled":true,"name":"s3"}},
"user":{"name":"swift_admin","roles":[{"name":"member"},
{"name":"admin"}],"role_links":[]},
 "serviceCatalog":[{"type":"object-store", "name":"Swift","endpoints_links":
[],"endpoint":[{"internalURL":
 "http://203.0.113.10:9024/v1/s3","publicURL":"http://203.0.113.10:9024/v1/
s3"}]}]}}

OpenStack Swift 123

http://bodenr.blogspot.com/2014/03/openstack-keystone-workflow-token.html
http://docs.openstack.org/api/openstack-identity-service/2.0/content/POST_authenticate_v2.0_tokens_.html

4. Use the scoped token and the service endpoint URL for Swift authentication. This step is the same as in V1 of OpenStack.

curl -v -H "X-Auth-Token: baf0709e30ed4b138c5db6767ba76a4e" http://
203.0.113.10:9024/v1/s3/{container}/{object}

Authentication using ECS Keystone V3 integration

ECS provides support for Keystone V3 by validating authentication tokens provided by OpenStack Swift users. For Keystone
V3, users are created outside of ECS using a Keystone V3 service. ECS does not perform authentication, but validates the
authentication token with the Keystone V3 service.

NOTE: In the Keystone domain, a project can be thought of as an equivalent to an ECS tenant/namespace. An ECS

namespace can be thought of as a tenant.

Keystone V3 enables users to be assigned to roles and for the actions that they are authorized to perform to be based on their
role membership. However, ECS support for Keystone V3 does not currently support Keystone policies, so users must be in the
admin group (role) to perform container operations.

Authentication tokens must be scoped to a project; unscoped tokens are not allowed with ECS. Operations related to unscoped
tokens, such as obtaining a list of projects (equivalent to a tenant in ECS) and services, must be performed by users against the
Keystone service directly, and users must then obtain a scoped token from the Keystone service that can then be validated by
ECS and, if valid, used to authenticate with ECS.

To enable ECS validation, an authentication provider must have been configured in ECS so that when a project-scoped token
is received from a user, ECS can validate it against the Keystone V3 authentication provider. In addition, an ECS namespace
corresponding to the Keystone project must be created. More information is provided in Configure OpenStack Swift and ECS
integration.

Authorization Checks

ECS uses the information provided by the Keystone tokens to perform authorization decisions. The authorization checks are as
follows:

1. ECS checks whether the project that the token is scoped to match the project in the URI.
2. If the operation is an object operation, ECS evaluates the ACLs associated with the object to determine if the operation is

allowed.
3. If the operation is a container operation, ECS evaluates the requested operation. If the user has the admin role they can

perform the following container operations: list, create, update, read, and delete.

Domains

in Keystone V3 all users belong to a domain and a domain can have multiple projects. Users have access to projects based on
their role. If a user is not assigned to a domain, their domain will be default.

Objects and containers created using Swift Keystone V3 users will be owned by <user>@<domain.com>. If the user was not
assigned to a domain, their username assigned to containers and objects will be <user>@default.

Configure OpenStack Swift and ECS integration

To ensure that an OpenStack Swift service that uses Keystone V3 can authenticate with ECS, you must ensure that the Swift
and ECS configurations are consistent.

The following prerequisites apply:
● Ensure that you have credentials for the Swift service administrator account. These credentials are required so that ECS can

authenticate with the Keystone service.
● Ensure that you have the identity of the Keystone project to which Swift users access ECS belong.
● Ensure that you have the credentials for an ECS System Administrator account.

1. Ensure that the ECS endpoint has been added to the Swift service catalog and is correctly formatted.

You must ensure that the endpoints are located in the "default" Keystone domain.

124 OpenStack Swift

2. Log into the ECS Portal as a System Administrator.

3. Create an authentication provider that specifies the Keystone V3 service endpoint and the credentials of an administrator
account that can be used to validate tokens.

See Add a Keystone authentication provider.

4. Create an ECS namespace that has the same ID as the Keystone project/account that the users want to authenticate
belong to.

Obtain the Keystone project ID.

a. In the ECS Portal, select Manage > Namespace > New Namespace
b. Enter the name of the namespace.

This should be the name of the Swift project.

c. Enter the namespace administrator account as the User Admin.

This should be the name of a management user that has previously been created.

d. Configure any other namespace settings that you require.

For more information about Namespace settings and about creating users in ECS, see the ECS Administration Guide
which is available from the https://www.dell.com/support/.

Once the namespace is created, users belonging to the corresponding Keystone project, and who have a token that is scoped to
that project, can authenticate with ECS (through ECS communicating with the Keystone authentication provider) and use the
Swift API to access the ECS object store.

Add a Keystone authentication provider

You can add a Keystone authentication provider to authenticate OpenStack Swift users.

● This operation requires the Security Administrator role in ECS.
● You can add only one Keystone authentication provider.
● Obtain the authentication provider information listed in Keystone authentication provider settings.

1. In the ECS Portal, select Manage > Authentication.

2. On the Authentication Provider Management page, click New Authentication Provider.

3. On the New Authentication Provider page, in the Type field, select Keystone V3.

The required fields are displayed.

4. Type values in the Name, Description, Server URL, Keystone Administrator, and Admin Password fields. For more
information about these fields, see Keystone authentication provider settings.

5. Click Save.

Keystone authentication provider settings

You must provide authentication provider information when you add or edit a Keystone authentication provider.

Table 34. Keystone authentication provider settings

Field Description

Name The name of the Keystone authentication provider. This name is used to identify
the provider in ECS.

Description Free text description of the authentication provider.

Type Keystone V3.

Server URL URl of the Keystone system that ECS connects to in order to validate Swift users.

Keystone Administrator Username for an administrator of the Keystone system. ECS connects to the
Keystone system using this username.

Admin Password Password of the specified Keystone administrator.

OpenStack Swift 125

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Authorization on Container
OpenStack Swift authorization targets only containers.

Swift currently supports two types of authorization:

● Referral style authorization
● Group style authorization

ECS supports only group-based authorization.

Admin users can perform all operations within the account. Non-admin users can only perform operations for each container
based on the container's X-Container-Read and X-Container-Write Access Control Lists. The following operations can be
granted to non-admin users:

Admin assigns read access to the container

The "admin" user can assign read permissions to a group using:

curl -X PUT -v -H 'X-Container-Read: {GROUP LIST}'
 -H 'X-Auth-Token: {TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}"

This command enables users belonging to the GROUP LIST to have read access rights to container1. For example, to assign read
permissions to the group "Member":

curl –X PUT -v –H 'X-Container-Read: Member' –H 'X-Auth-Token: {ADMIN_TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}

After read permission is granted, users who belong to target group(s) can perform the following operations:

● HEAD container - Retrieve container metadata. Only allowed if user is assigned to group that has Tenant Administrator
privileges.

● GET container - List objects within a container.
● GET objects with container - Read contents of the object within the container.

Admin assigns write access to the container

The "admin" user can assign read permissions to a group using:

curl -XPUT -v -H 'X-Container-Write: {GROUP LIST}'
 -H 'X-Auth-Token: {TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}"

This command enables users belonging to the GROUP LIST to have write access rights to container1. For example, to assign
write permissions to the group "Member":

curl –X PUT -v –H 'X-Container-Write: Member' –H 'X-Auth-Token: {ADMIN_TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}

The users in the group GROUP LIST are granted write permission. Once write permission is granted, users who belong to the
target group(s) can perform the following operations:

● POST container - Set metadata. Start with prefix "X-Container-Meta".
● PUT objects within container - Write/override objects within container.

Additional information about authorization can be found in: Container Operations.

126 OpenStack Swift

http://ceph.com/docs/master/radosgw/swift/containerops/

ECS Swift error codes
The error codes that can be generated by the OpenStack Swift head are listed in the following table. All errors are of type:
ObjectAccessException.

Table 35. Error Codes

Error Code HTTP
Status
Code

HTTP Status Description

ERROR_NAMESPACE_NOT_FOUND 400 BAD_REQUEST Namespace not found.

ERROR_KEYPOOL_NOT_FOUND 404 NOT_FOUND Keypool not found.

ERROR_KEYPOOL_NOT_EMPTY 409 CONFLICT Keypool not empty.

ERROR_OBJECT_NOT_FOUND 404 NOT_FOUND Object not found.

ERROR_VERSION_NOT_FOUND 404 NOT_FOUND Version not found.

ERROR_ACCESS_DENIED 403 FORBIDDEN null

ERROR_SERVICE_BUSY 503 SERVICE_UNAVAILABLE null

ERROR_PRECONDITION_FAILED 412 PRECONDITION_FAILED null

ERROR_INVALID_ARGUMENT 400 BAD_REQUEST Invalid argument.

ERROR_BAD_ETAG 422 SC_UNPROCESSABLE_ENTITY Bad etag.

ERROR_PROJECT_NOT_FOUND 404 NOT_FOUND SwiftException.
NO_PROJECT_FOUND.

ERROR_NO_DEVICE 404 NOT_FOUND SwiftException.
NO_DATA_STORE_FOUND. //add
416- Requested Range Not
Satisfiable to errorMap.

ERROR_INVALID_RANGE 422 SC_REQUESTED_RANGE_NOT_
SATISFIABLE

Requested range cannot be
satisfied.

ERROR_INSUFFICIENT_STORAGE 507 SC_INSUFFICIENT_STORAGE The server cannot process the
request because there is not
enough space on disk.

ERROR_RETENTION_INCORRECT 404 SC_NOT_FOUND The specified retention does not
exist.

ERROR_OBJECT_UNDER_RETENTION 409 SC_CONFLICT The object is under retention and
cannot be deleted or modified.

ERROR_METHOD_NOT_ALLOWED 403 SC_FORBIDDEN Quota may have been exceeded.

ERROR_BUCKET_NOT_FOUND 404 NOT_FOUND Bucket not found.

ERROR_KEYPOOL_OPERATION_NOT
_SUPPORTED

400 BAD_REQUEST VersionEnabled and
FileSystemEnabled functionality is
not supported.

ERROR_REP_GROUP_NOT_FOUND 400 BAD_REQUEST Specified Replication Group is
Invalid.

ERROR_OBJECT_METADATA_REACH
_MAXIMUM

400 BAD_REQUEST Metadata exceeds max allowed
length.

ERROR_KEYPOOL_LOCKED 409 CONFLICT Bucket may be locked.

ERROR_INVALID_PART 409 CONFLICT Segment eTag differs from that of
the manifest.

OpenStack Swift 127

Table 35. Error Codes (continued)

Error Code HTTP
Status
Code

HTTP Status Description

ERROR_DELETE_DIRECTORY_NOT
_EMPTY

409 CONFLICT Directory is not empty.

ERROR_API_INVALID 400 BAD_REQUEST Cross head access is not
supported.

ERROR_DIRECTORYTABLE_TABLE_FU
LL

503 SERVICE_UNAVAILABLE Unable to handle request due
to temporary overloading. Reduce
request rate.

128 OpenStack Swift

EMC Atmos
This section describes the support that ECS provides for EMC Atmos.

Topics:

• EMC Atmos API support in ECS
• Supported EMC Atmos REST API Calls
• Unsupported EMC Atmos REST API Calls
• Subtenant Support in EMC Atmos REST API Calls
• API Extensions
• ECS Atmos error codes

EMC Atmos API support in ECS
ECS supports a subset of the EMC Atmos API. This part details the supported operations and the ECS extensions.

The Atmos Object Service is made available on the following ports.

Table 36. Port Details

Protocol Ports

HTTP 9022

HTTPS 9023

The Atmos Programmer's Guide provides more information about the supported operations such as:

● Wire format compatibility for all supported operations, which also applies to the API operations exposed by ECS.
● Authenticating with the Atmos API and provides comprehensive examples for many of the supported features.

The Atmos Programmer’s Guide is available from http://support.emc.com.

Supported EMC Atmos REST API Calls
ECS supports a subset of the EMC Atmos API.

Table 37. Supported Atmos REST API calls

Method Path Description

Service Operations

GET /rest/service Get information about the system

Object Operations

POST /rest/objects /rest/namespace/<path> Create an object (See notes
below)

DELETE /rest/objects/<ObjectID> /rest/namespace/<path> Delete object

PUT /rest/objects/<ObjectID> /rest/namespace/<path> Update object (See notes below)

GET /rest/objects/<ObjectID> /rest/namespace/<path> Read object (or directory list)

POST /rest/namespace/<path>?rename Rename an object

MetaData Operations

5

EMC Atmos 129

http://support.emc.com

Table 37. Supported Atmos REST API calls (continued)

Method Path Description

GET /rest/objects/<ObjectID>?metadata/user /rest/namespace/<path>?
metadata/user

Get user metadata for an object

POST /rest/objects/<ObjectID>?metadata/user /rest/namespace/<path>?
metadata/user

Set user metadata

DELETE /rest/objects/<objectID>?metadata/user /rest/namespace/<path>?
metadata/user

Delete user metadata

GET /rest/objects/<ObjectID>?metadata/system /rest/namespace/
<path>?metadata/system

Get system metadata for an object

GET /rest/objects/<ObjectID>?acl /rest/namespace/<path>?acl Get ACL

POST /rest/objects/<ObjectID>?acl /rest/namespace/<path>?acl Set ACL

GET /rest/objects/<ObjectID>?metadata/tags /rest/namespace/<path>?
metadata/tags

Get metadata tags for an object

GET /rest/objects/<ObjectID>?info /rest/namespace/<path>?info Get object info

Head /rest/objects/<ObjectID> /rest/namespace/<path> Get all object metadata

Object-space Operations

GET /rest/objects List objects

GET /rest/objects?listabletags Get listable tags

Anonymous Access

GET /rest/objects/<ObjectId>?
uid=<uid>&expires=<exp>&signature=<sig> /rest/
namespace/<path>?uid=<uid>&expires=<exp>&signature=<sig>

Shareable URL

NOTE:

● The x-emc-wschecksum header is supported in ECS.

● The Atmos objects do not inherit ACL from the group ACL that is set at a bucket level.

○ If there is no user ACL provided, the ACL is inherited from the x-emc-useracl header.

○ If there is no group ACL provided, the Read ACL is used by default.

● GET /rest/objects does not support different response types with x-emc-accept. For example, text/plain is not

supported.

● Read, Write, and Delete ACLs work in ECS the same as Atmos.

● POST /rest/objects supports the x-emc-object-id header to enable legacy (44 character) object Ids.

Atmos listable tags

Listable tags are special user-defined tags used to list or filter objects. For example, an application could enable the user to tag a
group of illustrations (objects) with a tag like "Vacation2016". Later the application can respond to a query of "Vacation2016" by
listing only the objects tagged with this listable tag.

Using the Atmos protocol with ECS, a user cannot delete or modify another user's listable tags. Under some conditions, this
ability is enabled in native Atmos.

Listable tags are indexed in ECS, increasing the performance and scalability of the retrieval of tagged objects.

In ECS, the EMC_TAGS metadata tag is used to persist listable tags. This tag name should not be used in user-defined metadata
tags.

130 EMC Atmos

Object ID length

Support for the Atmos API in ECS expands the length of the object Id from 44 characters to 101 characters. Hence, when
moving applications from Atmos to ECS you need to be aware that the object Id length will be different.

To create an object with the legacy 44 character Id length, you can use the x-emc-object-id header. This enables objects to be
migrated to Atmos.

Unsupported EMC Atmos REST API Calls
The following Atmos REST API calls are not supported.

Table 38. Unsupported Atmos REST API calls

Method Path Description

Object Versioning

POST /rest/objects/<objectID>?versions Create a version of an object

DELETE /rest/objects/<objectID>?versions Delete an object version

GET /rest/objects/<objectID>?versions List versions of an object

PUT /rest/objects/<objectID>?versions Restore object version

Anonymous Access

POST /rest/accesstokens Create an access token

GET /rest/accesstokens/<token_id>?info Get access token detail

DELETE /rest/accesstokens/<token_id> Delete access token

GET /rest/accesstokens List access tokens

GET /rest/accesstokens/<token_id> Download content anonymously

Subtenant Support in EMC Atmos REST API Calls
ECS includes two native REST API calls that are specifically to add ECS subtenant support to Atmos applications.

Table 39. Call Details

API Call Example

Subtenant create PUT Http url: /rest/subtenant Required headers: x-emc-uid
(for example, x-emc-uid=wuser1@example.com) and x-emc-
signature. The subtenantID is set in the header "subtenantID"
of the response.

Subtenant delete DELETE Http url: /rest/subtenants/{subtenantID}
Required headers: x-emc-uid (for example, x-emc-
uid=wuser1@example.com) and x-emc-signature.

NOTE: Subtenant IDs are preserved in ECS after migration: The header is x-emc-subtenant-id:
{original_subt_id}.

API Extensions
ECS supports a number of extensions to the Atmos API.

The extensions and the APIs that support them are listed below:

EMC Atmos 131

● Appending data to an object
● ECS support for retention and retention expiration periods for Atmos objects

Appending data to an object

You can use ECS extensions to the EMC Atmos protocol to append data to an object.

There may be cases where you need to append to an object, but determining the exact byte offset is not efficient or useful. For
this scenario, ECS provides the ability to atomically append data to the object without specifying an offset (the correct offset is
returned to you in the response).

A Range header with the special value bytes=-1- is used to append data to an object. In this way, the object can be extended
without knowing the existing object size. The format is: Range: bytes=-1-
A sample request showing appending to an existing object using a Range value of bytes=-1- is shown in the following
example. Here the value and cat is sent in the request.

PUT /rest/namespace/myObject HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-namespace: emc
x-emc-uid: fa4e31a68d3e4929bec2f964d4cac3de/wuser1@sanity.local
x-emc-signature: ZpW9KjRb5+YFdSzZjwufZUqkExc=
Content-Type: application/octet-stream
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 200 OK
x-emc-mtime: 1431626712933
Date: Mon, 17 Jun 2013 20:46:01 GMT
x-emc-policy: default
x-emc-utf8: true
x-emc-request-id: 0af9ed8d:14cc314a9bc:112f6:9
x-emc-delta: 8
x-emc-append-offset: 24
Content-Length: 0
Server: Jetty(7.6.4.v20120524)

The offset position at which the data was appended is returned in the x-emc-append-offset header.

When the object is retrieved, and cat has been appended, and you can see the full value: The quick green fox jumps
over the lazy dog and cat.

ECS support for retention and retention expiration periods for
Atmos objects

ECS supports setting retention periods, and retention expiration periods on Atmos objects.

Retention periods

Retention periods define how long ECS retains an object before it can be edited or deleted. During the retention period, the
object cannot be edited or deleted from the system until the retention period has expired.

While creating an Atmos object in ECS, the object retention can be:

● Defined directly on the object
● Inherited from the retention period set on the ECS bucket in which the object is created

When a retention policy is set on the ECS namespace, set the retention period directly on the object. The object does not inherit
the retention policy in the namespace.

132 EMC Atmos

Table 40. Atmos retention periods

Retention set on the Using the Notes

Object Atmos API through the
● Header retention period in

seconds: 'x-emc-retention-
period:60'

● User meta data (UMD), end date:
'x-emc-
meta:user.maui.retentionE
nable=true,user.maui.rete
ntionEnd=2016-10-21:10:00
Z'

● Both header, and UMD: 'x-emc-
meta:user.maui.retentionE
nable =
true,user.maui.retentionE
nd=2016-10-21T18:14:30Z'
-header 'x-emc-retention-
period:60'

● Retention can be set on the object while creating, or
updating the object settings.

● Header retention period is defined in seconds.
● End date defines the UMD retention.
● If retention period is set from both the header and the

UMD, the UMD attribute is checked first and takes
precedence over the setting in the header.

● You cannot modify the retention period after it has
been set on the object until the period has expired.

● When using the x-emc header to set retention

○ If one is defined, -1 sets an infinite retention period
and disable the expiration period.

○ -2 disables the retention period set on the object.

ECS namespace ECS Portal from the New Namespace
or Edit Namespace page.

● If you want to set a retention period for an object, and
a retention policy has been defined on the object user's
namespace, you must still define a retention period
directly on the object as described earlier.

● If a retention policy is set on the ECS namespace,
and/or a retention period is set on a bucket within the
namespace, and an object is created within the bucket,
ECS retains the namespace, bucket, and object for the
longest retention periods set for either the namespace,
or bucket.

● If a retention period has been set on the object itself
through the object header, ECS retains the object for
the longest time set on the namespace, bucket, or
object.

● If a retention end date is defined on an object through
the Atmos API, ECS uses the Atmos API retention end
date set on the object, and ignores the namespace
retention policy, and bucket retention periods when
creating the object.

● While applying a retention policy on a subtenant
(bucket) containing Atmos objects, the retention policy
is applied to both objects created in the subtenant after
the retention policy was set, and objects that were
created in the subtenant before the retention policy
was set.

ECS REST API POST /
object/namespaces/namespace/
{namespace}/retention

ECS bucket ECS Portal from the New Bucket, or
Edit Bucket page.

ECS REST API
PUT /object/bucket/
{bucketName}/retention

NOTE: For further details about Namespace Retention Policies and Bucket Retention Periods, see the ECS Administration

Guide that is available on https://www.dell.com/support/.

Example: Request and response to create an object with retention set:

POST /rest/namespace/file1 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 16 Feb 2017 19:28:13 GMT
x-emc-meta:user.maui.retentionEnable=true,user.maui.retentionEnd=2017-06-30T06%3A38%3A44Z
x-emc-uid:f082110e13f249649340e172fb7b4956/u1
x-emc-utf8:true
Content-Type:plain/text
x-emc-signature:2Gz51WT+jQdMjlobDV0mz7obsXM=
Content-Length: 774

Response

EMC Atmos 133

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

HTTP/1.1 201 Created
Date: Thu, 16 Feb 2017 19:28:17 GMT
x-emc-policy: default
x-emc-utf8: true
x-emc-request-id: 0af7b3e4:15a4849d95e:37c:0
x-emc-delta: 774
Location: /rest/objects/
0a40bd045f7373d367639f095d1db0d15acadb82d5d2cd108e2142f4be04635c-59bdb9b6-20c0-4f55-
bc91-9db728a58854
x-emc-mtime: 1487273295379
Content-Length: 0
Server: ViPR/1.0

Example: Request and response to get object metadata:

curl --head -H "x-emc-date:Mon, 30 Jan 2017 16:56:35 GMT"
-H "x-emc-uid:7a2593be81374744adbf8e3983e7bd84/u1"
-H "x-emc-signature:CQgfoiIQ/DCif7TafcIskWyVpME="
http://10.247.179.228:9022/rest/objects/
d1bced53f2ebbcbc51af1d84747bd198d123d3b8585293a5bf0d32bb73c6cf4b-365f4482-c24a-4eca-
b24a-070efe29bf63

Response

HTTP/1.1 200 OK
Date: Mon, 30 Jan 2017 16:56:35 GMT
x-emc-mtime: 1485795387838
x-emc-retention-period: 21798212
x-emc-meta: user.maui.retentionEnd=2017-10-10T00:00:00Z,user.maui.retentionEnable=true,allow-inline-
update=false,atime=2017-01-30T16:45:48Z,ctime=2017-01-30T16:56:27Z,ctype=plain/text,data-
range=CAAQgFA=,dek=kq/W1Rg/
7qbmaCcLF8pFvqlDJ8+suPTdVddBBZFwZA86muG3P0Pb7w==,dekAlgo=AESKeyWrapRFC5649,etag=0-,fs-
mtime-
millisec=1485795387838,itime=2017-01-30T16:45:48Z,kekId=s3.7a2593be81374744adbf8e3983e7bd
843cdda755061bac6c12c06eb02800a7fee4b11ac2e03f62bb01eee02995068e56,keypoolid=s3.7a2593be8
1374744adbf8e3983e7bd84,keypoolname=7a2593be81374744adbf8e3983e7bd84,keyversion=0,mtime=2
017-01-30T16:56:27Z,namespace=s3,nlink=1,object-
name=,objectid=d1bced53f2ebbcbc51af1d84747bd198d123d3b8585293a5bf0d32bb73c6cf4b-365f4482-
c24a-4eca-
b24a-070efe29bf63,objname=file,parentOid=53ae036bfcfb46f5580b912222f3026835e3ef972c7e3e53
2ba4a5de30b1946e,parentZone=urn:storageos:VirtualDataCenterData:365f4482-c24a-4eca-
b24a-070efe29bf63,policyname=default,retention=CgYIoKOZmlE=,size=0,type=regular,uid=u1,pa
rent=apache,gid=apache
x-emc-useracl: u1=FULL_CONTROL
x-emc-groupacl: other=READ
x-emc-policy: default
x-emc-request-id: 0af7b3e4:159f0185cf7:957:4
Content-Type: plain/text
Content-Length: 0
Server: ViPR/1.0

Example: Update an object with retention values.

POST /rest/namespace/file2?metadata/user HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 16 Feb 2017 19:37:15 GMT
x-emc-meta:user.maui.retentionEnable=true,user.maui.retentionEnd=2017-07-30T06%3A38%3A44Z
x-emc-uid:f082110e13f249649340e172fb7b4956/u1
x-emc-utf8:true
Content-Type:plain/text
x-emc-signature:5UPpZcCfO0vtxMTW62fa2/2SmLg=

Response

HTTP/1.1 200 OK

Date: Thu, 16 Feb 2017 19:37:16 GMT
x-emc-policy: _int
x-emc-utf8: true

134 EMC Atmos

x-emc-request-id: 0af7b3e4:15a4849d95e:582:0
Content-Length: 0
Server: ViPR/1.0

Expiration period

When a retention period end date is defined for an Atmos object, and the expiration period is also set on the object, ECS
automatically deletes the object at the date that is defined in the expiration period. The expiration period:

● Can be set on objects using the Atmos API, or the x-emc header.

● The expiration period must be later than the retention end date.
● The expiration period is disabled by default.
● When using the x-emc header to set retention and expiration, a -1 value disables the expiration period.

Example: Set the expiration period using the x-emc header:

POST /rest/namespace/file2 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Tue, 31 Jan 2017 19:38:00 GMT
x-emc-expiration-period:300
x-emc-uid:a2b85977fd08488b80e646ea875e990b/u1
Content-Type:plain/text
x-emc-signature:krhYBfKSiM3mFOT6FtRB+2/xZnw=
Content-Length: 10240
Expect: 100-continue

Example: Request and response using the Atmos API:

POST /rest/namespace/file2 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 02 Feb 2017 02:47:32 GMT
x-emc-meta:user.maui.expirationEnable=true,user.maui.expirationEnd=2017-03-30T20:20:00Z
x-emc-uid:239e20dec7a54301a0b02f6090edcace/u1
Content-Type:plain/text
x-emc-signature:5tGEyK/9qUZCPSnQ9OPOdktN+Zo=
Content-Length: 10240
Expect: 100-continue

Response

HTTP/1.1 100 Continue
HTTP/1.1 201 Created
Date: Thu, 02 Feb 2017 02:47:33 GMT
x-emc-policy: default
x-emc-request-id: 0af7b3e4:159fb81ddae:345e:0
x-emc-delta: 10240
Location: /rest/objects/5c3abaf60e0e207abec96baf0618c0461b7cd716898f8a12ee236aed1ec94bea-
c86ee0e9-8709-4897-898e-c3d1895e1d93
x-emc-mtime: 1486003652813
Content-Length: 0
Server ViPR/1.0 is not blacklisted
Server: ViPR/1.0

Example: Request and response for update meta data with Atmos API:

POST /rest/namespace/file?metadata/user HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 02 Feb 2017 02:44:13 GMT
x-emc-meta:user.maui.expirationEnable=true,user.maui.expirationEnd=2017-03-30T20:20:00Z
x-emc-uid:239e20dec7a54301a0b02f6090edcace/u1
Content-Type:plain/text
x-emc-signature:9pzcc/Ce4Lq3k52QKdfWLYlZ1Yc=

EMC Atmos 135

Response

HTTP/1.1 200 OK
Date: Thu, 02 Feb 2017 02:44:14 GMT
x-emc-policy: _int
x-emc-request-id: 0af7b3e4:159fb81ddae:339e:0
Content-Length: 0
Server ViPR/1.0 is not blacklisted
Server: ViPR/1.0

Retention start delay window

Atmos enables you to specify a start delay window when creating a retention period, which enables you to migrate to ECS. Also,
this feature prevents the objects from getting into retention after initial upload of an object.

Atmos creates subtenant request header, x-emc-retention-start-delay that captures the autocommit interval.

 ./atmoscurl.pl -user USER1 -action PUT -pmode TID -path / -header "x-emc-retention-
period:300" -header "x-emc-retention-start-delay:120" -include

Retention start delay applied on object mtime

In Atmos object creation, if retention start delay is set on the bucket (x-emc-retention-start-delay), the start delay for
the object is calculated based on time-since-mtime of the object.

NOTE: The time-since-mtime is considered to calculate the start delay as it does not give an exact time to complete

an upload and x-emc-retention-start-delay could be shorter even as a few minutes.

Override bucket-level retention for migrated objects

● If the user decides to migrate data through Atmos API to an ECS bucket in a compliant namespace with maui retention
headers and if there are any conflicting retentions, the longest retention wins.

● On noncompliant buckets, for Atmos migrated objects, the user.maui*headers specifies the final retention value on an
object. If there are no user.maui*headers available, the longest retention wins.

● On object creation in ECS through Atmos API, the user.maui*headers cannot be combined with any of x-emc-
retention headers.

Atmos API supports GeoDrive

Atmos API supports GeoDrive on ECS. GeoDrive is a windows application that enables Atmos data to be mirrored to the local
Windows file system, and it is the same as CIFS-ECS.

ECS Atmos error codes
The error codes that can be generated by the EMC Atmos head are listed in the following table.

Table 41. Error Codes

Error Code Error Message HTTP Status
Code

HTTP Status Description

1001 The server encountered an internal error. Please try
again.

500 Internal Server Error

1002 One or more arguments in the request were invalid. 400 Bad Request

1003 The requested object was not found. 404 Not Found

136 EMC Atmos

Table 41. Error Codes (continued)

1004 The specified range cannot be satisfied. 416 Requested Range Not
Satisfiable

1005 One or more metadata tags were not found for the
requested object.

400 Bad Request

1006 Operation aborted because of a conflicting operation
in process against the resource.

NOTE: This error code may indicate that the
system is temporarily too busy to process the
request. This is a non-fatal error; you can re-try
the request later.

409 Conflict

1007 The server encountered an internal error. Please try
again.

500 Internal Server Error

1008 The requested resource was not found on the server. 400 Bad Request

1009 The method specified in the Request is not allowed
for the resource identified.

405 Method Not Allowed

1010 The requested object size exceeds the maximum
allowed upload/download size.

400 Bad Request

1011 The specified object length does not match the actual
length of the attached object.

400 Bad Request

1012 There was a mismatch between the attached object
size and the specified extent size.

400 Bad Request

1013 The server encountered an internal error. Please try
again.

500 Internal Server Error

1014 The maximum allowed metadata entries per object
has been exceeded.

400 Bad Request

1015 The request could not be finished due to insufficient
access privileges.

401 Unauthorized

1016 The resource you are trying to create already exists. 400 Bad Request

1019 The server encountered an I/O error. Please try
again.

500 Internal Server Error

1020 The requested resource is missing or could not be
found.

500 Internal Server Error

1021 The requested resource is not a directory. 400 Bad Request

1022 The requested resource is a directory. 400 Bad Request

1023 The directory you are attempting to delete is not
empty.

400 Bad Request

1024 The server encountered an internal error. Please try
again.

500 Internal Server Error

1025 The server encountered an internal error. Please try
again.

500 Internal Server Error

1026 The server encountered an internal error. Please try
again.

500 Internal Server Error

1027 The server encountered an internal error. Please try
again.

500 Internal Server Error

1028 The server encountered an internal error. Please try
again.

500 Internal Server Error

EMC Atmos 137

Table 41. Error Codes (continued)

1029 The server encountered an internal error. Please try
again.

500 Internal Server Error

1031 The request timestamp was outside the valid time
window.

403 Forbidden

1032 There was a mismatch between the signature in the
request and the signature as computed by the server.

403 Forbidden

1033 Unable to retrieve the secret key for the specified
user.

403 Forbidden

1034 Unable to read the contents of the HTTP body. 400 Bad Request

1037 The specified token is invalid. 400 Bad Request

1040 The server is busy. Please try again 500 Internal Server Error

1041 The requested filename length exceeds the maximum
length allowed.

400 Bad Request

1042 The requested operation is not supported. 400 Bad Request

1043 The object has the maximum number of links 400 Bad Request

1044 The specified parent does not exist. 400 Bad Request

1045 The specified parent is not a directory. 400 Bad Request

1046 The specified object is not in the namespace. 400 Bad Request

1047 Source and target are the same file. 400 Bad Request

1048 The target directory is not empty and may not be
overwritten

400 Bad Request

1049 The checksum sent with the request did not match
the checksum as computed by the server

400 Bad Request

1050 The requested checksum algorithm is different than
the one previously used for this object.

400 Bad Request

1051 Checksum verification may only be used with append
update requests

400 Bad Request

1052 The specified checksum algorithm is not implemented. 400 Bad Request

1053 Checksum cannot be computed for an object on
update for which one wasn't computed at create
time.

400 Bad Request

1054 The checksum input parameter was missing from the
request.

400 Bad Request

1056 The requested operation is not supported for
symlinks.

400 Bad Request

1057 If-Match precondition failed. 412 Precondition failed

1058 If-None-Match precondition failed. 412 Precondition failed

1059 The key you are trying to create already exists. 400 Bad Request

1060 The requested key was not found. 404 Not found

1061 The requested pool already exists. 400 Bad Request

1062 The requested pool was not found. 404 Not found

1063 The maximum number of pools has been reached. 400 Bad request

1064 The request could not be completed because the
subtenant is over quota

403 Forbidden

138 EMC Atmos

Table 41. Error Codes (continued)

1065 The request could not be completed because the UID
is over quota

403 Forbidden

1070 Did not receive the expected amount of data. 400 Bad request

1071 Client closed connection before reading all data. 499 Client Closed Request

1072 Could not write all bytes to the client. 499 Client Closed Request

1073 Timeout writing data to the client. 499 Client Closed Request

EMC Atmos 139

CAS
This section describes the support that ECS provides for CAS.

Topics:

• Setting up CAS support in ECS
• Cold Storage
• Compliance
• CAS retention in ECS
• Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor
• Set up namespace retention policies
• Create and set up a bucket for a CAS user
• Set up a CAS object user
• Set up bucket ACLs for CAS
• ECS Management APIs that support CAS users
• Content Addressable Storage (CAS) SDK API support
• ECS CAS error codes
• Enabling data2 IP in CAS

Setting up CAS support in ECS
This chapter describes how to modify your basic configuration to support CAS.

ECS CAS enables CAS SDK-based client applications to store, retrieve, and delete fixed content objects from ECS storage.

The underlying ECS storage must be provisioned before you can configure your ECS set up. Provisioning is usually completed
when a new ECS rack is installed. This includes setting up a storage pool, VDC, and replication group.

For your storage pools, you might consider setting up a cold archive. See Cold Storage.

Next, set up your namespaces, users, and buckets using the standard documentation. See the ECS Administration Guide which
is available from the https://www.dell.com/support/ for these steps as well as provisioning steps.

Cold Storage
Describes cold storage archives.

Cold archives store objects that do not change frequently and do not require the robust default EC scheme. The EC scheme
used for a cold archive is 10 data fragments plus two coding fragments (10/12). The efficiency is 1.2x.

You can specify a cold archive (Cold Storage) when creating a new storage pool. After the storage pool is created, the EC
scheme cannot be changed. This scheme can support the loss of a single node. It also supports loss of one drive out of six or
two drives out of 12 on two separate nodes.

EC requirements

Table 42. Requirements for regular and cold archives compared

Use case How enabled Minimum
required
nodes

Minimum
required
disks

Recommende
d disks

EC efficiency EC scheme

Regular archive Default 4 16* 32 1.33x 12/16

6

140 CAS

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Table 42. Requirements for regular and cold archives compared (continued)

Use case How enabled Minimum
required
nodes

Minimum
required
disks

Recommende
d disks

EC efficiency EC scheme

Cold archive Configured by System
Administrator

8 12* 24 1.2x 10/12

NOTE: *Since the minimum deployable configuration for the C-Series appliance is two appliances with 12 disks each, 24

disks is the effective minimum.

Storage pool configuration

To establish a cold archive from the portal, Select Cold Storage when you create a storage pool. Once a storage pool has been
created, this setting cannot be changed.

Compliance
Describes ECS features that support government and industry standards for the storage of electronic records.

ECS meets the storage requirements of the following standards, as certified by Cohasset Associates Inc:

● Securities and Exchange Commission (SEC) in regulation 17 C.F.R. § 240.17a-4(f)
● Commodity Futures Trading Commission (CFTC) in regulation 17 C.F.R. § 1.31(b)-(c)

Compliance has three components:

● Platform hardening: addressing common security vulnerabilities.
● Policy-based record retention: limiting the ability to change retention policies for records under retention.
● Compliance reporting: periodic reporting by a system agent records the system's compliance status.

Platform hardening and Compliance

The following ECS security features support Compliance standards.

ECS platform security features:

● User root access to nodes is disabled (no user root logins permitted).
● ECS customers can access nodes through the admin user set up during first-time installations.
● The admin user runs commands on nodes using sudo.

● There is full audit logging for sudo commands.

● ESRS provides the ability to shut down all remote access to nodes. In ESRS Policy Manager, set the Start Remote
Terminal action to Never Allow.

● All unnecessary ports (ftpd, sshd) are closed.
● The emcsecurity user with the Lock Administrator role can lock nodes in a cluster. This means that remote access over

the network by SSH is disabled. The Lock Administrator can then unlock a node to allow for remote maintenance activities or
other authorized access.

NOTE: Node locking does not affect authorized ECS Portal or ECS Management API users.

Compliance and retention policy

Describes enhanced rules for record retention on a Compliance-enabled ECS system. ECS sets object retention features to On
at the object, bucket, and namespace levels. Compliance strengthens these features by limiting changes that can be made to
retention settings on objects under retention. Rules include:
● Compliance is set at the namespace level. This means that all buckets in the namespace must have a retention period greater

than zero. For CAS, buckets with zero retention can be created, as long as the Enforce Retention Information in Object
setting is turned On.

● You can only turn Compliance on when you create a namespace. (You cannot add Compliance to an existing namespace.)

CAS 141

● You cannot turn Compliance off once it is turned on.
● All buckets in a namespace must have a retention period greater than zero.

NOTE: If you have an application that assigns object-level retention periods, do not use ECS to assign a retention period

greater than the application retention period. This action causes application errors.

● A bucket with data in it cannot be deleted regardless of its retention value.
● Applying the Infinite option to a bucket means that objects in the bucket in a Compliance-enabled namespace cannot be

deleted permanently.
● The retention period for an object cannot be deleted or shortened. Therefore, the retention period for a bucket cannot be

deleted or shortened.
● You can increase object and bucket retention periods.
● No user can delete an object under retention. This includes users with the CAS privileged-delete permission.

Compliance agent

Describes the operation of the Compliance agent.

Compliance features are turned on by default, except for Compliance monitoring. If monitoring is turned on, the agent
periodically logs a message.

NOTE: Contact your representative to turn on Compliance monitoring. Monitoring messages are available by command from

the node. They do not appear in the ECS Portal.

CAS retention in ECS
A CAS C-Clip can have a retention period that governs the length of time the associated object is retained in ECS storage
before an application can delete it.

Retention periods

Retention periods are assigned in the C-Clip for the object by the CAS application.

For example, if a financial document must be retained for three years from its creation date, then a three-year retention period
is specified in the C-Clip associated with the financial document. It is also possible to specify that the document is retained
indefinitely.

Retention policies (retention classes)

NOTE: The Centera concept of retention classes maps to retention policies in ECS. This documentation uses retention

policies.

Retention policies enable retention use cases to be captured and applied to C-Clips. For example, different types of documents
could have different retention periods. You could require the following retention periods:

● Financial: 3 years
● Legal: 5 years
● Email: 6 months

When a retention policy is applied to a number of C-Clips, by changing the policy, the retention period changes for all objects to
which the policy applies.

Retention policies are associated with namespaces in ECS and are recognized by the CAS application as retention classes.

ECS bucket-level retention and CAS

Bucket-level retention is not the default pool retention in Centera. In ECS, CAS default retention is constantly zero.

142 CAS

Default retention period in objects written without object-level retention in
Compliance namespaces

Starting with ECS 3.0, when an application writes C-Clips with no object retention to an ECS CAS bucket in a Compliance
namespace, and the bucket has a retention value (6 months, for example), the default retention period of infinite (-1) will be
assigned to the C-Clips. The C-Clips can never be deleted because their effective retention period is the longest one between
the two: the bucket-level retention period and the default object-level retention.

CAS precedence

When multiple retention periods are applied to a CAS object in ECS, the retention period with the higher value has precedence
no matter how the retention was applied.

How to apply CAS retention

You can define retention polices for namespaces in the ECS Portal or with the ECS Management API. See Set up namespace
retention policies.

Your external CAS application can assign a fixed retention period or a retention policy to the C-Clip during its creation.

When applying retention periods through APIs, specify the period in seconds.

Note that ECS CAS takes the creation time of the C-Clip for all retention related calculations and not the migration time.

How to create retention policies with the ECS Management API.

Table 43. ECS Management API resources for retention

Method Description

PUT /object/bucket/{bucketName}/retention The retention value for a bucket defines a mandatory
retention period which is applied to every object within a
bucket. If you set a retention period of 1 year, an object from
the bucket cannot be deleted for one year.

GET /object/bucket/{bucketName}/retention Returns the retention period that is currently set for a
specified bucket.

POST /object/namespaces/namespace/{namespace}/
retention

For namespaces, the retention setting acts like a policy, where
each policy is a <Name>:<Retention period> pair. You can
define a number of retention policies for a namespace and
you can assign a policy, by name, to an object within the
namespace. This allows you to change the retention period
of a set of objects that have the same policy assigned by
changing the corresponding policy.

PUT /object/namespaces/namespace/{namespace}/
retention/{class}

Updates the period for a retention period that is associated
with a namespace.

GET /object/namespaces/namespace/{namespace}/
retention

Returns the retention policy defined for a namespace.

You can find more information about the ECS Management API in ECS Management REST API introduction. The online
reference is here: ECS API Reference.

CAS 143

https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Advanced retention for CAS applications: event-based
retention, litigation hold, and the min/max governor
Describes advanced retention features available in the CAS API that are supported by ECS.

Customer applications use the CAS API to enable retention strategies. When CAS workloads are migrated to ECS, ECS
awareness of CAS API features allow the customer applications to continue working with the migrated data. In ECS, the
following advanced retention management (ARM) features are available without a separate license:

● Event-based retention: the ability to configure an object through its C-Clip to apply (trigger) a retention period or retention
policy when the CAS application receives a specified event.

● Litigation hold: the ability to prevent deletion of an object if the CAS application has applied a litigation hold to the object
through its C-Clip. The CAS application can apply up to 100 litigation holds to an object by creating and applying unique
litigation hold IDs.

● Min/Max governor: The ability for an administrator to set bucket-level limits for fixed retention period or variable retention
period. A variable retention period is one that is set to support event-based retention. In ECS, System or Namespace Admins
can set the values with the ECS Portal. Programmers can use the ECS Management API to set the values.

NOTE: ARM is supported for legacy CAS data written with any naming scheme that is migrated to ECS.

Min/max governor for CAS bucket-level retention

From the ECS Portal, locate a CAS bucket and select Edit. All the features shown on the screen below are CAS-only features
except for the Bucket Retention Period feature. Bucket Retention Period is the standard ECS bucket retention feature
supported on all ECS bucket types.

Figure 3. Retention options for CAS buckets

Table 44. CAS Bucket

Feature Description

Enforce Retention If this feature is turned on, no CAS object can be created without retention information (period or
policy). An attempt to save such an object will return an error. If it is turned on, it is possible not to
configure Bucket Retention Period even in a compliance-enabled environment.

NOTE: When a CE+ mode Centera is migrated to ECS, Enforce Retention is turned on by
default on the bucket.

Bucket Retention Period If a bucket retention period is specified, then the longer period will be enforced if there is both
a bucket-level and an object-level retention period. In a Compliance-enabled environment Bucket
Retention Period is mandatory unless retention information in the object is enforced. However,
once configured the Bucket Retention Period cannot be reset even when retention information in
the object is enforced.

Minimum Fixed
Retention Period

This feature governs the retention periods specified in objects. If an object's retention period is
outside of the bounds specified here, then an attempt to write the object fails. When using retention
policies, the min/max settings are not enforced. Selecting Infinite for Minimum Fixed Retention
Period means all retention values must be infinite. Selecting if for Mamimum Fixed Retention
Period means there is no maximum limit. Min/max retention constrains are applied to any C-Clip
written to a bucket. If a clip is migrated by any SDK-based third-party tool the retention should be
within bounds, otherwise an error is thrown.

Maximum Fixed
Retention Period

144 CAS

Table 44. CAS Bucket (continued)

Feature Description

Minimum Variable
Retention Period

This feature governs variable retention periods specified in objects using event-based retention
(EBR). In EBR, a base retention period is set and the programmed trigger function has the ability to
increase the retention period when the trigger fires. If an object's new retention period is outside of
the bounds specified here, then an attempt to write the object in response to the trigger fails. When
using retention policies, the min/max settings are not enforced. Selecting Infinite for Minimum
Variable Retention Period means all retention values must be infinite. Selecting if for Mamimum
Variable Retention Period means there is no maximum limit. Min/max retention constrains are
applied to any C-Clip written to a bucket. If a clip is migrated by any SDK-based third-party tool the
retention should be within bounds, otherwise an error is thrown.

Maximum Variable
Retention Period

NOTE: If the System Administrator or programmer has not set any values for the fixed and variable retention periods, the

ECS Management API get function will not return values for the min/max settings. The Enforce Retention Information

in C-Clip will return a default value of false.

Event-based retention

Event-based retention (EBR) is an instruction specifying that a record cannot be deleted before an event and during a
specified period after the event. In CAS, EBR is a C-Clip with a specified base retention period or retention policy and an
application-defined trigger that can set a longer retention period when the trigger fires. The retention period only begins when
the trigger fires. When a C-Clip is marked for EBR, it cannot be deleted prior to the event unless a privileged delete is used.

When using EBR, the C-Clip life-cycle is as follows:

● Create: the application creates a new C-Clip and marks it as being under EBR. The application can provide a fixed retention
period which acts as a minimum retention and it must provide an event based retention period or policy.

● Trigger Event: The application triggers the event, which is the starting point of the event-based retention period or
retention policy. At this point the application can assign a new event-based retention period, provided that it is longer than
the one assigned at the time of the C-Clip creation.

● Delete: When the application tries to delete the C-Clip, the following conditions must be met:
○ Policy (Namespace) retention has expired
○ Bucket retention has expired
○ Fixed retention has expired
○ The event has been triggered
○ Both the EBR set at the time of creation and any subsequent changes (extensions) at the time of the event have expired

The following figure shows the three possible scenarios for a C-Clip under EBR:

● C1 has a fixed or minimal retention which already expired before the event was triggered.
● C2 has a fixed or minimal retention which will expire before the EBR expires.
● C3 has a fixed or minimal retention which will expire after the EBR expires.

CAS 145

Figure 4. EBR scenarios

For non-compliant namespaces, privileged delete commands can override fixed and variable retention for EBR.

When applying EBR retention, it must comply with the Min/Max Governor settings for the variable retention period.

Table 45. CAS API functions for event-based retention

Function Description

FPClip_EnableEBRWithClass This function sets a C-Clip to be eligible to receive a future event and enables
an event-based retention (EBR) class to be assigned to the C-Clip during C-Clip
creation time.

FPClip_EnableEBRWithPeriod This function sets a C-Clip to be eligible to receive a future event and enables
an event-based retention (EBR) period to be assigned to the C-Clip during C-Clip
creation time.

FPClip_IsEBREnabled This function returns a Boolean value to indicate whether or not a C-Clip is
enabled for event-based retention (EBR).

FPClip_GetEBRClassName This function retrieves the name of the event-based retention (EBR) policy
assigned to the C-Clip.

FPClip_GetEBREventTime This function returns the event time set on a C-Clip when the event-based
retention (EBR) event for that C-Clip was triggered.

FPClip_GetEBRPeriod This function returns the value (in seconds) of the event-based retention (EBR)
period associated with a C-Clip.

FPClip_TriggerEBREvent This function triggers the event of a C-Clip for which event-based retention
(EBR) was enabled.

FPClip_TriggerEBREventWithClass This function triggers the event of a C-Clip for which event-based retention
(EBR) was enabled and assigns a new EBR policy to the C-Clip.

FPClip_TriggerEBREventWithPeriod This function triggers the event of a C-Clip for which event-based retention
(EBR) was enabled and assigns a new EBR period to the C-Clip.

Litigation hold

Litigation hold allows CAS applications to temporarily prevent deletion of a C-Clip. Litigation hold is useful for data that is
subject to an official investigation, subpoena, or inquiry and that may not be deleted until the investigation is over. Once there is
no need to hold the data, the litigation hold can be released by the application and normal retention behavior resumes. The CAS
application places and removes a litigation hold at the C-Clip level.

146 CAS

NOTE: Even a privileged delete cannot delete a C-Clip under litigation hold.

One C-Clip can be under several litigation holds. The application must generate unique litigation hold IDs and be able to track
the specific litigation holds associated with a C-Clip. The application cannot query a C-Clip for this information. There is only
a function that determines the litigation hold state of the C-Clip. If there is one or several litigation holds on the C-Clip, this
function returns true, otherwise, it is false.

When using litigation hold, the C-Clip life-cycle is as follows:

● Create: The application creates a new C-Clip and provides a fixed and/or event-based retention period.
● Set litigation hold: An application puts the C-Clip on hold. This application can be different from the application that wrote

the C-Clip.
● Release litigation hold: An application releases the C-Clip. This application can be different from the application that sets the

litigation hold or wrote the C-Clip.
● Delete: When the application tries to delete the C-Clip, the following conditions must be satisfied:

○ There are no other litigation holds outstanding on the C-Clip.
○ Policy retention has expired.
○ Standard bucket retention has expired. (Standard bucket retention is available to all ECS object types, but is not

recommended for CAS.)
○ Fixed retention period has expired (CAS-only feature).
○ Event-based retention has expired (CAS-only feature).

The following figure shows the three possible scenarios for a C-Clip put under litigation hold:

● C1 has a fixed retention that already expired when put under hold.
● C2 has a fixed retention that expires during the hold.
● C3 has a fixed retention that will expire after release of the hold.

Figure 5. Litigation hold scenarios

A C-Clip can have multiple litigation holds assigned to it. If this is the case, each litigation hold requires a separate API call with a
unique identifier for the litigation hold.

NOTE: The maximum size of litigation hold ID is 64 characters. The maximum litigation hold IDs per C-Clip is 100. These

limitations are enforced by the CAS API.

Table 46. CAS API functions for litigation hold

Function Description

FPClip_GetRetentionHold This function determines the hold state of the C-Clip and returns true or
false.

FPClip_SetRetentionHold This function sets or resets a retention hold on a C-Clip. For multiple litigation
holds, provide a unique litigation hold ID for each hold. For multiple holds,
make one call per ID.

CAS 147

Set up namespace retention policies
Provides CAS-specific set up instructions for namespace retention policies.

The Retention Policy feature for namespace provides a way to define and manage CAS retention classes for all C-Clips created
in the namespace.

A namespace can have many retention polices, where each policy defines a retention period. By applying a retention policy to a
number of C-Clips (with the API), a change to the retention policy changes the retention period for all objects associated with
the policy. For CAS, retention classes are applied to an object's C-Clip by the application. If an object is under a retention period,
requests to modify the object are not allowed.

1. At the ECS Portal, select Manage > Namespace.

2. To edit the configuration of an existing namespace, choose the Edit action associated with the existing namespace.

3. Add and Configure Retention Policies.

a. In the Retention Policies area, select Add to add a new policy.
b. Enter a name for the policy.
c. Specify the period for the Retention Policy.

Select the Infinite checkbox to ensure that objects with this policy are never deleted.

4. Select Save.

Create and set up a bucket for a CAS user
Configure a bucket to support a CAS user.

In ECS, management users create buckets and become the bucket owners. For CAS, object users need to be set up as
bucket owners. Follow this procedure to properly set up a CAS bucket and make the CAS user the bucket owner. In this
example, newcasadmin1 is a management user, newcasuser1 is a CAS object user, and newcasns1 is the namespace. The
procedure assumes that the two users and namespace have been set up.

1. Login to the ECS Portal as newcasadmin1.

2. At the ECS Portal, select Manage > Bucket.

3. Choose New Bucket.

4. Fill in the fields as shown below:

Table 47. Replication Details

Field Value

Replication Group Your replication group

Set current user as Bucket Owner Check

CAS On

5. Choose Save.

6. Select Manage > User.

7. Make sure the Object User tab is active, search for newcasuser1 and choose Edit.

8. In Default Bucket, type newcasbucket1 and choose Set Bucket.

9. Choose Close.

10. Select Manage > Bucket.

11. Search for newcasbucket1 and choose Edit bucket.

12. In Bucket Owner, type newcasuser1.

13. Choose Save.

148 CAS

Set up a CAS object user
Set up an object user to use CAS.

When you set up an object user, you can assign CAS features to the profile that make up the elements of a CAS profile. You will
be able to view the resulting PEA file for use in your CAS applications.

1. At the ECS Portal, select Manage > Users.

2. To edit the configuration of an existing object user, choose the Edit action associated with the user.

3. In the CAS area, type a password (secret) or choose Generate to have the portal create one for you.

4. Choose Set Password.

5. Choose Generate PEA File to generate the PEA file your application needs to authenticate to the CAS storage on ECS.

6. By setting a default bucket, every action the user takes that does not specify a bucket uses the specified default bucket.
Type the name of the default bucket and choose Set Bucket.

7. Choose Add Attribute to add a metadata tag to the user.

8. Add the metadata tag name and value.

See the CAS SDK documentation for more info on metadata tags.

9. Choose Save Metadata.

Set up bucket ACLs for CAS
Edit a bucket's access control list to limit a user's access.

Some ECS bucket ACLs map to CAS permissions and some have no meaning for CAS data.

1. At the ECS Portal, select Manage > Bucket.

2. To edit the ACLs of an existing bucket, choose the Edit ACL action associated with the existing bucket.

3. Choose the Edit associated with the user.

4. Modify the permissions.

Table 48. Bucket ACLs

ECS ACL ACL definition

READ Read, Query, and Exist capabilities

WRITE Write and Litigation Hold capabilities

FULL_CONTROL Read, Delete, Query, Exist, Clip Copy, Write, Litigation Hold

PRIVILEDGED_WRITE Privileged Delete

DELETE Delete

NOTE: Other ECS ACLs have no meaning to CAS.

5. Select Save.

6. You can also edit the ACLs at the group level. Groups are predefined and membership in the group is automatic based on
user criteria. Choose Group ACLs.

7. Choose Add.

8. Select the group you want to edit from the Group Name list.

Table 49. Bucket ACL groups

Bucket ACL group Description

public All users authenticated or not.

all users All authenticated users.

other Authenticated users but not the bucket owner.

CAS 149

Table 49. Bucket ACL groups

Bucket ACL group Description

log delivery Not supported.

9. Edit the ACLs and select Save.

ECS Management APIs that support CAS users
Describes ECS Management API resources that you can use to manage CAS user and profile settings.

ECS Management API resource descriptions:

● <ip address>?name=<name>,password=<password> : Authenticates you with the CAS API as an alternative to
PEA file.

NOTE: You need the name and password from the PEA file.

● GET /object/user-cas/secret/{uid} : Gets the CAS secret for the specified user.

● GET /object/user-cas/secret/{namespace}/{uid}: Gets the CAS secret for the specified namespace and user.

● POST /object/user-cas/secret/{uid}: Creates or updates the CAS secret for a specified user.

● GET /object/user-cas/secret/{namespace}/{uid}/pea: Generates a PEA file for the specified user.

● POST /object/user-cas/secret/{uid}/deactivate: Deletes the CAS secret for a specified user.

● GET /object/user-cas/bucket/{namespace}/{uid}: Gets the default bucket for the specified namespace and
user.

● GET /object/user-cas/bucket/{uid}: Gets the default bucket for a specified user.

● POST /object/user-cas/bucket/{namespace}/{uid}: Updates the default bucket for the specified namespace
and user.

● GET /object/user-cas/applications/{namespace}: Gets the CAS registered applications for a specified
namespace.

● POST /object/user-cas/metadata/{namespace}/{uid}: Updates the CAS registered applications for a specified
namespace and user.

● GET /object/user-cas/metadata/{namespace}/{uid}: Gets the CAS user metadata for the specified namespace
and user.

● PUT /object/user-cas/ip-restrictions/{namespace_name}/{user_name}: Sets IP restrictions for the CAS
user.

● GET /object/user-cas/ip-restrictions/{namespace_name}/{user_name} : Gets IP restrictions that is set
for the CAS user.

● GET /object/user-cas/ip-restrictions/: Lists IP restrictions that is set for all the CAS users.
NOTE: You can restrict client IPs from accessing a CAS bucket. For more information about how to restrict client IPs

from accessing a CAS bucket, see ECS Administration Guide which is available from https://www.dell.com/support/.

See the ECS API Reference for more information.

Content Addressable Storage (CAS) SDK API support
This section describes about the CAS query support and the CAS SDK APIs that are not supported prior to ECS 3.0 versions.

Supported versions

ECS supports the CAS build 3.1.544 or higher. Also you should verify that your ISV’s application supports ECS.

More information about ECS CAS support is provided in Setting up CAS support in ECS.

CAS Query support

CAS Query is supported beginning with ECS 2.2.

150 CAS

https://www.dell.com/support/
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

NOTE: In ECS, CAS Query operations return results based on the creation time of the existing C-Clip and the deletion time

of the deleted C-Clip (reflection). In EMC Centera, query operations return results based on the write-time of the object.

Unsupported APIs in ECS versions before ECS 3.0

CAS SDK API calls not supported in versions of ECS prior to ECS 3.0:

● FPClip_EnableEBRWithClass
● FPClip_EnableEBRWithPeriod
● FPClip_SetRetentionHold
● FPClip_TriggerEBREvent
● FPClip_ TriggerEBREventWithClass
● FPClip_ TriggerEBREventWithPeriod
● FPClip_GetEBRClassName
● FPClip_GetEBREventTime
● FPClip_GetEBRPeriod
● FPClip_GetRetentionHold
● FPClip_IsEBREnabled

CAS connection string

When the client or the application tries to connect to ECS using the CAS protocol, it connects with the first node. If the first
node is not reachable, then the application tries to connect with the other IPs/nodes by traversing left to right in the connection
string. The application stops trying when all the nodes in the connection string are down or not reachable.

REST API Call to get IPs - /object/vdcs/vdc/local
Use the svc tool command to call the API svc_rest_cmd /object/vdcs/vdc/local

NOTE: ECS recommends mentioning the IPs of all the nodes in the connection string for an uninterrupted connection. For

more information, see KB 000537533.

The FPPoolOpen API considers a connection string as an argument. Some examples:

● 10.0.0.1,10.0.0.2?mypeafile.pea
● 10.0.0.1,10.0.0.2?name=profilename,secret=secret
● 10.0.0.1,10.0.0.2,secondary=10.1.0.10?name=profilename,secret=secret

NOTE:

● The connection strings can be of several forms and can be more than a collection of IP addresses. See the SDK

Programmers Guide for a complete list.

● In the connection string , you can use alternate VDC IPs such as ECS1_IP1, ECS2_IP1, ECS1_IP2, ECS2_IP2.

● The client or the application user interface should allow the admin to enter a free format string. The free format string

allows the user to configure a wide array of connection string possibilities.

● If local object metadata reads are enabled for a CAS bucket, then ECS tries to read local objects first if they were

replicated. If the local objects were not replicated, then ECS requests the object metadata from the remote site. No

changes are needed in the connection string for buckets with local object metadata reads enabled to compare to other

ECS CAS buckets.

● If local object metadata reads are enabled for a CAS bucket, then ECS tries to read object locally first if replicated and,

if not, then requests object metadata from a remote site, that is no changes are needed in the connection string for local

object metadata reads enabled buckets compare to other ECS CAS buckets.

CAS 151

ECS CAS error codes
The error codes that can be generated by the CAS head are listed in the following table.

Table 50. Error Cdes

Value Error name Description

10001 FP_INVALID_NAME The name that you have used is not XML compliant.

10002 FP_UNKNOWN_OPTION You have used an unknown option name with
FPPool_SetIntOption() or FPPool_GetIntOption().

10003 FP_NOT_SEND_REQUEST_ERR An error occurred when you sent a request to the server.
This internal error was generated because the server could
not accept the request packet. Verify all LAN connections
and try again.

10004 FP_NOT_RECEIVE_REPLY_ERR No reply was received from the server. This internal error
was generated because the server did not send a reply to
the request packet. Verify all LAN connections and try again.

10005 FP_SERVER_ERR The server reports an error. An internal error on the server
occurred. Try again.

10006 FP_PARAM_ERR You have used an incorrect or unknown parameter. Example:
Is a string-variable too long, null, or empty when it should
not be? Does a parameter have a limited set of values?
Check each parameter in your code.

10007 FP_PATH_NOT_FOUND_ERR This path does not correspond to a file or directory on the
client system. The path in one of your parameters does not
point to an existing file or directory. Verify the path in your
code.

10008 FP_CONTROLFIELD_ERR The server reports that the operation generated a
"Controlfield missing" error. This internal error was
generated because the required control field was not found.
Try again. (Obsolete fromv2.0.)

10009 FP_SEGDATA_ERR The server reports that the operation generated a
"Segdatafield missing" error. This internal error was
generated because the required field containing the blob
data was not found in the packet. Try again. (Obsolete
fromv2.0.)

10010 FP_DUPLICATE_FILE_ERR A duplicate CA already exists on the server. If you did not
enable duplicate file detection, verify that you have not
already stored this data and try again.

10011 FP_OFFSET_FIELD_ERR The server reports that the operation generated an
"Offsetfield missing" error. This internal error was generated
because the offset field was not found in the packet. Try
again. (Obsolete fromv2.0.)

10012 FP_OPERATION_NOT_SUPPORTED This operation is not supported. If FPClip_Write(),
FPTag_GetSibling(), FPTag_GetPrevSibling(),
FPTag_GetFirstChild() or FPTag_Delete() returned this
error, then this operation is not supported for C-Clips
opened in 'flat' mode. If FPStream returned this error, then
you are trying to perform an operation that is not supported
by that stream.

10013 FP_ACK_NOT_RCV_ERR A write acknowledgement was not received. Verify your LAN
connections and try again.

10014 FP_FILE_NOT_STORED_ERR Could not write the blob to the server ORcould not find
the blob on the server. This internal error was generated

152 CAS

Table 50. Error Cdes (continued)

because the store operation of the blob was not successful.
Verify that the original data was correctly stored, verify your
LAN connections and try again.

10015 FP_NUMLOC_FIELD_ERR The server reports that the operation generated a
"Numlockfield missing" error. This internal error was
generated because the numlock field was not found in the
packet. Try again. (Obsolete fromv2.0.)

10016 FP_SECTION_NOT_FOUND_ERR The GetSection request could not retrieve the defined
section tag. This internal error was generated because a
required section is missing in the CDF. Verify the content of
your code and try again. (Obsolete fromv2.0.)

10017 FP_TAG_NOT_FOUND_ERR The referenced tag could not be found in the CDF. This
internal error was generated because information is missing
from the description section in the CDF. Verify the content
of your code and try again.

10018 FP_ATTR_NOT_FOUND_ERR Could not find an attribute with that name. If
FPTag_GetXXXAttribute() returned this error, then
the attribute was not found in the tag. If
FPTag_GetIndexAttribute() returned this error, then the
index parameter is larger than the number of attributes in
the tag.

10019 FP_WRONG_REFERENCE_ERR The reference that you have used is invalid. The reference
was not opened, already closed, or not of the correct type.

10020 FP_NO_POOL_ERR It was not possible to establish a connection with a cluster.
The server could not be located. This means that none
of the IP addresses could be used to open a connection
to the server or that no cluster could be found that has
the required capability. Verify your LAN connections, server
settings, and try again.

10021 FP_CLIP_NOT_FOUND_ERR Could not find the referenced C-Clip in the cluster. Returned
by FPClip_Open(), it means the CDF could not be found on
the server. Verify that the original data was correctly stored
and try again.

10022 FP_TAGTREE_ERR An error exists in the tag tree. Verify the content of your
code and try again.

10023 FP_ISNOT_DIRECTORY_ERR A path to a file has been given but a path to a directory is
expected. Verify the path to the data and try again.

10024 FP_UNEXPECTEDTAG_ERR Either a "file" or "folder" tag was expected but not given.
An unexpected tag was found when retrieving the CDF. The
CDF is probably corrupt.

10025 FP_TAG_READONLY_ERR The tag cannot be changed or deleted (it is probably a top
tag). Verify your program logic.

10026 FP_OUT_OF_BOUNDS_ERR The options parameter is out of bounds. One of the function
parameters exceeds its preset limits. Verify each parameter
in your code.

10027 FP_FILESYS_ERR A file system error occurred, for example an incorrect path
was given, or you are trying to open an unknown file or a file
in the wrong mode. Verify the path and try again.

10029 FP_STACK_DEPTH_ERR You have exceeded the nested tag limit. Review the
structure of your content description and try again.
Deprecated.

10030 FP_TAG_HAS_NO_DATA_ERR You are trying to access blob data of a tag that does not
contain blob data.

CAS 153

Table 50. Error Cdes (continued)

10031 FP_VERSION_ERR The C-Clip has been created using a more recent version of
the client software than you are using. Upgrade to the latest
version.

10032 FP_MULTI_BLOB_ERR The tag already has data associated with it. You need to
create a new tag to store the new data or delete this tag
and recreate it and try again.

10033 FP_PROTOCOL_ERR You have used an unknown protocol option (Only HPP
is supported). Verify the parameters in your code. It is
also possible that an internal communication error occurred
between the server and client. If you have verified your code
and the problem persists then you need to upgrade to the
latest client and server versions.

10034 FP_NO_SOCKET_AVAIL_ERR No new network socket is available for the transaction.
Reduce the number of open transactions between
the client and the server or use the function
FPPool_SetGlobalOption() to increase the number of
available sockets with FP_OPTION_MAXCONNECTIONS.

10035 FP_BLOBIDFIELD_ERR A BlobID field (the Content Address) was expected but
not given. Upgrade to the latest client and server versions.
(Obsolete fromv2.0.)

10036 FP_BLOBIDMISMATCH_ERR The blob is corrupt: a BlobID mismatch occurred between
the client and server. The Content Address calculation on
the client and the server has returned different results. The
blob is corrupt. If FPClip_Open() returns this error, it means
the blob data or metadata of the C-Clip is corrupt and
cannot be decoded.

10037 FP_PROBEPACKET_ERR The probe packet does not contain valid server addresses.
Upgrade to the latest client and server versions. (Obsolete
fromv2.0.)

10038 FP_CLIPCLOSED_ERR (Javaonly.) You tried to perform an operation on a closed
C-Clip. This operation requires access to an open C-Clip.
Verify your code and try again.

10039 FP_POOLCLOSED_ERR (Javaonly.) You tried to perform an operation on a closed
pool. This operation requires access to an open pool. Verify
your code and LAN connections and try again.

10040 FP_BLOBBUSY_ERR The blob on the cluster is busy and cannot be read from or
written to. You tried to read from or write to a blob that is
currently busy with another read/write operation. Try again.

10041 FP_SERVER_NOTREADY_ERR The server is not ready yet. This error can occur when a
client tries to connect to the server to execute an operation
and the nodes with the access role are running but the
nodes with the storage role have not been initialized yet.
This error can also occur when not enough mirror groups
are found on the server. Allow the SDK to perform the
automatic number of configured retries.

10042 FP_SERVER_NO_CAPACITY_ERR The server has no capacity to store data. Enlarge the
server's capacity and try again.

10043 FP_DUPLICATE_ID_ERR The application passed in a sequence ID that was previously
used.

10044 FP_STREAM_VALIDATION_ERR A generic stream validation error occurred.

10045 FP_STREAM_BYTECOUNT_MISMATCH_
ERR

A generic stream byte count mismatch was detected.

154 CAS

Table 50. Error Cdes (continued)

10101 FP_SOCKET_ERR An error on the network socket occurred. Verify the
network.

10102 FP_PACKETDATA_ERR The data packet contains wrong data. Verify the network,
the version of the server or try again later.

10103 FP_ACCESSNODE_ERR No node with the access role can be found. Verify the IP
addresses provided with FPPool_Open().

10151 FP_OPCODE_FIELD_ERR The Query Opcode field is missing from the packet.

10152 FP_PACKET_FIELD_MISSING_ERR The packet field is missing.

10153 FP_AUTHENTICATION_FAILED_ERR Authentication to get access to the server failed. Check the
profile name and secret.

10154 FP_UNKNOWN_AUTH_SCHEME_ERR An unknown authentication scheme has been used.

10155 FP_UNKNOWN_AUTH_PROTOCOL_ERR An unknown authentication protocol has been used.

10156 FP_TRANSACTION_FAILED_ERR Transaction on the server failed.

10157 FP_PROFILECLIPID_NOTFOUND_ERR No profile clip was found.

10158 FP_ADVANCED_RETENTION_DISABLED_
ERR

The Advanced Retention Management feature is not
licensed or enabled for event-based retention (EBR) and
retention hold.

10159 FP_NON_EBR_CLIP_ERR An attempt was made to trigger an EBRevent on a C-Clip
that is not eligible to receive an event.

10160 FP_EBR_OVERRIDE_ERR An attempt was made to trigger or enable the event-based
retention period/class of a C-Clip a second time. You can set
EBR information only once.

10161 FP_NO_EBR_EVENT_ERR The C-Clip is under event-based retention protection and
cannot be deleted.

10162 FP_RETENTION_OUT_OF_BOUNDS_ERR The event-based retention period being set does not meet
the minimum/maximum rule.

10163 FP_RETENTION_HOLD_COUNT_ERR The number of retention holds exceeds the limit of 100.

10164 FP_METADATA_MISMATCH_ERR Mutable metadata mismatch found.

10201 FP_OPERATION_REQUIRES_MARK The application requires marker support but the stream does
not provide that.

10202 FP_QUERYCLOSED_ERR The FP Query for this object is already closed. (Java only).

10203 FP_WRONG_STREAM_ERR The function expects an input stream and gets an output
stream or vice-versa.

10204 FP_OPERATION_NOT_ALLOWED The use of this operation is restricted or this operation is not
allowed because the server capability is false.

10205 FP_SDK_INTERNAL_ERR An SDK internal programming error has been detected.

10206 FP_OUT_OF_MEMORY_ERR The system ran out of memory. Check the system's
capacity.

10207 FP_OBJECTINUSE_ERR Cannot close the object because it is in use. Check your
code.

10208 FP_NOTYET_OPEN_ERR The object is not yet opened. Check your code.

10209 FP_STREAM_ERR An error occurred in the generic stream. Check your code.

10210 FP_TAG_CLOSED_ERR The FP Tag for this object is already closed. (Java only.)

10211 FP_THREAD_ERR An error occurred while creating a background thread.

CAS 155

Table 50. Error Cdes (continued)

10212 FP_PROBE_TIME_EXPIRED_ERR The probe limit time was reached.

10213 FP_PROFILECLIPID_WRITE_ERR There was an error while storing the profile clip ID.

10214 FP_INVALID_XML_ERR The specified string is not valid XML.

10215 FP_UNABLE_TO_GET_LAST_ERROR The call to FPPool_GetLastError() or
FPPool_GetLastErrorInfo() failed. The error status of the
previous function call is unknown; the previous call may have
succeeded.

10216 FP_LOGGING_CALLBACK_ERR An error occurred in the application-defined FP Logging
callback.

Enabling data2 IP in CAS
Data2 IP allows CAS to start on multiple IPs. To enable data2 on CAS, contact ECS remote support.

NOTE: Data2 IP is enabled by default in CAS from ECS 3.1 and later versions.

156 CAS

ECS Management REST API
This section describes information about accessing and authenticating with the ECS Management REST API and provides a
summary of the API paths.

Topics:

• ECS Management REST API introduction
• Authenticate with the ECS Management REST API

ECS Management REST API introduction
You can configure and manage the object store using the ECS REST Management API. Once the object store is configured, you
can perform object create, read, update, and delete operations using the ECS-supported object and file protocols.

For more information about the ECS Management REST API, see these topics:

● Authenticate with the ECS Management REST API
● REST API for Object Control summary

In addition, you can see the ECS REST API REFERENCE Guide which is autogenerated from the source code and provides a
reference for the methods available in the API.

Authenticate with the ECS Management REST API
ECS uses a token-based authentication system for REST API calls. This section provides examples of authenticating with the
ECS API, with and without cookies.

When you are authenticated by ECS, the ECS API returns an authentication token. You can use this token for authentication in
subsequent calls.

● If the client automatically follows redirects, the ECS API returns an HTTP 401 code. You must then log in and authenticate to
obtain a new token.

● If the client does not automatically follow redirects, the ECS API returns an HTTP 302 code. The 302 code directs the client
to where it must get re-authenticated.

You can retrieve and use authentication tokens by:

● Saving the X-SDS-AUTH-TOKEN cookie from a successful authentication request and sending that cookie with subsequent
requests.

● Reading the X-SDS-AUTH-TOKEN HTTP header from a successful authentication request and copying that header into any
subsequent request.

The ECS API is available on port:4443. Clients access ECS by issuing a login request in the form:

https://<ECS_IP>:4443/login

Authenticate without cookies

The following example shows how to use authentication tokens by reading the X-SDS-AUTH-TOKEN HTTP header from a
successful authentication request and copying that header into a subsequent request. This example does not use cookies. The
examples are written using the curl command line tool and formatted for readability.

The following ECS API call executes a GET on the /login resource. The -u option specifies the user of the basic
authentication header. You must specify the user in the request. Upon successful authentication, the ECS API returns a HTTP
200 code and the X-SDS-AUTH-TOKEN header containing the encoded token.

7

ECS Management REST API 157

The default ECS API token lifetime is 8 hours, which means that after 8 hours the token is no longer valid. The default idle
time for a token is two hours; after a two hour idle time, the token expires. If you use an expired token, you are redirected to
the /login URL. You will receive an HTTP status error code 401 upon any subsequent use of the expired token.

curl -L --location-trusted -k https://10.247.100.247:4443/login -u "root:ChangeMe" -v

> GET /login HTTP/1.1
> Authorization: Basic cm9vdDpDaGFuZ2VNZQ==
> User-Agent: curl/7.24.0 (i386-pc-win32) libcurl/7.24.0 OpenSSL/0.9.8t zlib/1.2.5
> Host: 10.247.100.247:4443
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Tue, 26 Nov 2013 22:18:25 GMT
< Content-Type: application/xml
< Content-Length: 93
< Connection: keep-alive
< X-SDS-AUTH-TOKEN:
BAAcQ0xOd3g0MjRCUG4zT3NJdnNuMlAvQTFYblNrPQMAUAQADTEzODU0OTQ4NzYzNTICAAEABQA5dXJu

OnN0b3JhZ2VvczpUb2tlbjo2MjIxOTcyZS01NGUyLTRmNWQtYWZjOC1kMGE3ZDJmZDU3MmU6AgAC0A8=
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
 <user>root</user>
</loggedIn>
* Connection #0 to host 10.247.100.247 left intact
* Closing connection #0
* SSLv3, TLS alert, Client hello (1):

You can copy the X-SDS-AUTH-TOKEN contents and pass it into the next API call through the curl tool -H switch, as shown in
the following example.

curl https://10.247.100.247:4443/object/namespaces
 -k
 -H "X-SDS-AUTH-TOKEN:
BAAcOHZLaGF4MTl3eFhpY0czZ0tWUGhJV2xreUE4PQMAUAQADTEzODU0OTQ4NzYzNTICAAEABQA5dXJu

OnN0b3JhZ2VvczpUb2tlbjpkYzc3ODU3Mi04NWRmLTQ2YjMtYjgwZi05YTdlNDFkY2QwZDg6AgAC0A8="

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<namespaces>
 <namespace>
 <id>ns1</id>
 <link rel="self" href="/object/namespaces/namespace/ns1"/>
 <names>ns1</name>
 </namespace>
</namespaces>

Authenticate with cookies

This example shows how to use authentication tokens by saving the cookie from a successful authentication request and
passing the cookie into a subsequent request.

The following example uses the ?using-cookies=true parameter to indicate that you want to receive cookies in addition
to the normal HTTP header. The Curl command saves the authentication token to a file named cookiefile in the current
directory.

curl -L --location-trusted -k https://<ECS_IP>:4443/login?using-cookies=true
-u "root:Password"
-c cookiefile
-v

158 ECS Management REST API

The following command passes the cookie with the authentication token using the Curl command -b switch, and returns the
user's tenant information.

curl -k https://10.247.100.247:4443/object/namespaces -b cookiefile -v

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<namespaces>
 <namespace>
 <id>ns1</id>
 <link rel="self" href="/object/namespaces/namespace/ns1"/>
 <names>ns1</name>
 </namespace>
</namespaces>

Logout

The logout API ends a session.

Each user is allowed a maximum of 100 concurrent authentication tokens. Beyond this limit, the system refuses any new
connection for a user until tokens free up. Tokens can free up by expiring naturally, or by issuing the following ECS API call:

GET https://<ECS_IP>:4443/logout

If you have multiple sessions running simultaneously, the following API call forces the termination of all tokens related to the
current user.

GET https://<ECS_IP>:4443/logout?force=true

The following example shows a logout request. You pass in the authentication token from header or cookie to log out.

GET https://<ECS_IP>:4443/logout

X-SDS-AUTH-TOKEN:{Auth_Token}

The response should be HTTP 200.

ECS Management REST API whoami command

An ECS user can view their own user name, tenant association, and roles using the whoami API call.

Request

GET https://<ECS_IP>:4443/user/whoami

The following responses shows the whoami output for the root user and for a user who has been assigned to the
NAMESPACE_ADMIN role for the ns1 namespace.

Response

HTTP 200

GET /user/whoami
<user>
 <common_name>root</common_name>
 <distinguished_name/>
 <namespace/>
 <roles>
 <role>SYSTEM_ADMIN</role>

ECS Management REST API 159

 </roles>
</user>

HTTP 200

GET /user/whoami
<user>
 <common_name>fred@corp.sean.com</common_name>
 <distinguished_name/>
 <namespace>ns1</namespace>
 <roles>
 <role>NAMESPACE_ADMIN</role>
 </roles>
</user>

ECS Management REST API summary

The ECS Management REST API enables the ECS object store to be configured and managed.

Table 51. ECS Management REST API - methods summary

API Area Description

Data Movement (Copy to Cloud)

DM Policy POST /object/bucket/test-policy to validate a DM policy. POST /object/
bucket/test-policy-edit to validate a DM policy edit. GET /object/bucket/
{bucketName}/copypolicy to return a DM policy for the specified bucket. PUT /
object/bucket/{bucketName}/copypolicy to update a DM policy for the specified
bucket. DELETE /object/bucket/{bucketName}/copypolicy to delete a DM policy
for the specified bucket. GET /object/bucket/copypolicy to return a list of all DM
policies for the specified namespace.

Configuration

Certificate /object-cert API to manage certificates. /object-cert/keystore API to specify and
rotate the certificate chain used by ECS.

Configuration Properties /config/object/properties API to set the user scope as GLOBAL or NAMESPACE. This
must be set before the first user is created. The default is GLOBAL. In GLOBAL scope, users
are global and are can be shared across namespaces. In this case, the default namespace
associated with a user determines the namespace for object operations and there is no
need to supply a namespace for an operation. In NAMESPACE scope, a user is associated
with a namespace. In this case, there might be more than one user with the same name,
each associated with a different namespace, and a namespace must be provided for every
operation.

Licensing /license API to add a license and retrieve license details.

Feature /feature/ServerSideEncryption API to retrieve the details of the
ServerSideEncryption feature.

Syslog /vdc/syslog/config API to manage Syslog configuration and send alerts to the Syslog
server for troubleshooting and debugging purposes.

SNMP /vdc/snmp/config API to manage SNMP configuration and send alerts to SNMP server
for troubleshooting and debugging purposes.

CAS

CAS user profile /object/user-cas/secret API to assign secret keys to CAS users and generate
the Pool Entry Authorization (PEA) file. /object/user-cas/bucket API to retrieve or
update the default bucket of a specified CAS user. /object/user-cas/applications/
{namespace} API to retrieve the CAS registered applications for a specified namespace. /
object/user-cas/metadata/{namespace}/{uid} API to retrieve or update the CAS
user metadata for the specified namespace and CAS user.

160 ECS Management REST API

Table 51. ECS Management REST API - methods summary (continued)

API Area Description

File system access

NFS /object/nfs API to create an NFS export based on an ECS bucket and enable access
to the export by UNIX users and groups. /object/nfs/users API to manage mapping
between ECS user/group and corresponding UNIX user ID. /object/nfs/exports API to
create and manage NFS exports. For the best practices to apply when you mount ECS NFS
exports, see KB 532228.

Metering

Billing /object/billing API to meter object store usage at the namespace and bucket level.

Migration

Transformation /object/transformation API to enable data transformation from a Centera cluster.

Monitoring

Capacity /object/capacity API to retrieve the current managed capacity.

Dashboard /dashboard/zones/localzone API to retrieve the local VDC details, including details
on replication groups, storage pools, nodes, and disks. /dashboard/zones/hostedzone
API to retrieve the hosted VDC details, including details on replication groups. /dashboard/
replicationgroups/{id} API to retrieve the replication group instance details. /
dashboard/storagepools/{id} API to retrieve the storage pool details, including details
on the storage pool nodes. /dashboard/nodes/{id} API to retrieve the node instance
details, including node instance disk and process details. /dashboard/disks/{id} API
to retrieve the disk instance details. /dashboard/processes/{id} API to retrieve the
process instance details. /dashboard/rglinks/{id} API to retrieve the replication group
link instance details. /dashboard/datatables/{id} API to retrieve the replication group
datatables instance details.

Events /vdc/events API to retrieve audit events for a specified namespace.

Alerts /vdc/alerts API to retrieve audit alerts.

Multi-tenancy

Namespace /object/namespaces API to create and manage a namespace. This API also sets the
retention period and quota for the namespace. For more information about retention
periods and quotas, see the ECS Administration Guide which is available from the https://
www.dell.com/support/.

Geo-replication

Replication Group /data/data-service/vpools API to create and manage replication groups.

Temporary Failed Zone /tempfailedzone/ API to retrieve all temporary failed zones, or the temporary failed zones
for a specified replication group.

Provisioning

Base URL /object/baseurl API to create a Base URL that allows existing applications to work with
the ECS object store. For more information on Base URL, see the ECS Administration Guide
which is available from the https://www.dell.com/support/.

Bucket /object/bucket API to provision and manage buckets. /object/bucket/
{bucketName}/lock API to lock bucket access. /object/bucket/{bucketName}/
tags API to add tags to a specified bucket. /object/bucket/{bucketName}/
retention API to set the retention period for a specified bucket. /object/bucket/
{bucketName}/quota API to set the quota for a specified bucket. /object/bucket/
{bucketName}/policy API to add a policy for a specified bucket. /object/bucket/
{bucketName}/metadata API to add metadata for a specified bucket.

ECS Management REST API 161

https://support.emc.com/kb/532228
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs
https://www.dell.com/support/home/en-in/product-support/product/ecs-appliance-software-without-encryption/docs

Table 51. ECS Management REST API - methods summary (continued)

API Area Description

POST /object/bucket/<bucket>/deactivate?namespace=<namespace
>&[emptyBucket=true|false]" API to delete a bucket. The optional
emptyBucket=true parameter will empty the bucket as part of the delete.

GET /object/bucket/<bucket>/empty-bucket- status?
namespace=<namespace> API to get bucket status.

Data store /vdc/data-stores API to create datastores on file systems (/vdc/data-stores/
filesystems) or on commodity nodes (/vdc/data-stores/commodity).

Node /vdc/nodes API to retrieve the nodes that are currently configured for the cluster. /vdc/
nodes/{nodename}/lockdown API to set the locked or unlocked status for a specified
node. /vdc/lockdown API to retrieve the locked or unlocked status for a VDC.

Storage pool /vdc/data-services/varrays API to create and manage storage pools.

Virtual data center /object/vdcs API to add a VDC and specify the inter-VDC endpoints and secret key for
replication of data between ECS sites.

VDC keystore /vdc/keystore API to manage certificates for a VDC.

Support

Call home /vdc/callhome/ API for managing ESRS configuration and sending alerts to ConnectEMC
for troubleshooting and debugging purposes.

Task Coordinator

Task GET /object/task?task_id=task_abc to get single task.

/object/task?[limit=][&marker=] to list all tasks.

/object/task?[task_status=][task_type=][bucket_id=] to list tasks with
filters.

/object/task/$task_id/priority/3 to update task priority.

DELETE /object/task/$task_id/abort to delete task.

User Management

Authentication provider /vdc/admin/authnproviders API to add and manage authentication providers.

Password group (Swift) /object/user-password API to generate a password for use with OpenStack Swift
authentication.

Secret key /object/user-secret-keys API to assign secret keys to object users and to manage
secret keys.

Secret key self-service /object/secret-keys API to enable S3 users to create a new secret key that enables
them to access objects and buckets within their namespace in the object store.

User (Object) /object/users API to create and manage object users. Object users are always associated
with a namespace. The API returns a secret key that can be used for S3 access. An object
user assigned an S3 secret key can change it using the REST API. /object/users/lock.
API to lock user access. /object/users/{userName}/tags. API to associate tags with a
user ID. Tags are in the form of name=value pairs.

User (management) /vdc/users API to create and manage users. Management users can be assigned to the
System Administrator role or to the Namespace Administrator role. You can use this API the
change the local management user password.

162 ECS Management REST API

Topics:

• Hadoop core-site.xml properties for ECS HDFS

Hadoop core-site.xml properties for ECS HDFS
When configuring the Hadoop core-site.xml file, use this table as a reference for the properties and their related values.

Table 52. Hadoop core-site.xml properties

Property Description

File system implementation properties

fs.viprfs.impl <property>
<name>fs.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

fs.AbstractFileSystem.v
iprfs.impl <property>

 <name>fs.AbstractFileSystem.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
 </property>

Properties that define the authority section of the ECS HDFS file system URI

fs.vipr.installations A comma-separated list of names. The names are further defined by the fs.vipr.installation.
[federation].hosts property to uniquely identify sets of ECS data nodes. The names are used as
a component of the authority section of the ECS HDFS file system URI. For example:

<property>
 <name>fs.vipr.installations</name>
 <value><federation>,<site1>,<testsite></value>
 </property>

fs.vipr.installation.
[federation].hosts

The IP addresses of the ECS cluster's data nodes or the load balancers for each name listed in the
fs.vipr.installations property. Specify the value in the form of a comma-separated list of IP addresses
or FQDNs. For example:

<property>
 <name>fs.vipr.installation.<federation>.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
 </property>

fs.vipr.installation.
[installation_name].reso
lution

Specifies how the ECS HDFS software knows how to access the ECS data nodes. Values are:
● dynamic: Use this value when accessing ECS data nodes directly without a load balancer.
● fixed: Use this value when accessing ECS data nodes through a load balancer.

<property>
 <name>fs.vipr.installation.<federation>.resolution</name>
 <value>dynamic</value>
 </property>

A

163

Table 52. Hadoop core-site.xml properties (continued)

Property Description

fs.vipr.installation.
[installation_name].reso
lution.dynamic.time_to
_live_ms

When the fs.vipr.installation.[installation_name].resolution property is set to
dynamic, this property specifies how often to query ECS for the list of active nodes. Values are in
milliseconds. The default is 10 minutes.

<property>

<name>fs.vipr.installation.<federation>.resolution.dynamic.time_to_li
ve_ms</name>
 <value>600000</value>
 </property>

ECS file system URI

fs.defaultFS A standard Hadoop property that specifies the URI to the default file system. Setting this property
to the ECS HDFS file system is optional. If you do not set it to the ECS HDFS file system, you must
specify the full URI on each file system operation. The ECS HDFS file system URI has this format:

viprfs://[bucket_name].[namespace].[federation]

● bucket_name: The name of the HDFS-enabled bucket that contains the data you want to use
when you run Hadoop jobs.

● namespace : The tenant namespace associated with the HDFS-enabled bucket.
● federation: The name associated with the set of ECS data nodes that Hadoop can use to

access ECS data. The value of this property must match one of the values specified in the
fs.vipr.installations property.

For example:

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://testbucket.s3.federation1</value>
 </property>

umask property

fs.permissions.umask-
mode

This standard Hadoop property specifies how ECS HDFS should compute permissions on objects.
Permissions are computed by applying a umask on the input permissions. The recommended value
for both simple and Kerberos configurations is: 022. For example:

<property>
<name>fs.permissions.umask-mode</name>
<value>022</value>
</property>

Identity translation properties

fs.viprfs.auth.identity_t
ranslation

This property specifies how the ECS HDFS client determines what Kerberos realm a particular user
belongs to if one is not specified. ECS data nodes store file owners as username@REALM, while
Hadoop stores file owners as just the username. The possible values are:
● NONE: Default. Users are not mapped to a realm. Use this setting with a Hadoop cluster that uses

simple security. With this setting ECS HDFS does not perform realm translation.
● CURRENT_USER_REALM: Valid when Kerberos is present. The user's realm is auto-detected,

and it is the realm of the currently signed in user. In the example below, the realm is EMC.COM
because sally is in the EMC.COM realm. The file ownership is changed john@EMC.COM.

kinit sally@EMC.COM
hdfs dfs -chown john /path/to/file

164

Table 52. Hadoop core-site.xml properties (continued)

Property Description

Realms provided at the command line takes precedence over the property settings.

<property>
 <name>fs.viprfs.auth.identity_translation
 </name>
 <value>CURRENT_USER_REALM</value>
 </property>

NOTE: FIXED_REALM is now deprecated.

fs.viprfs.auth.realm The realm assigned to users when the fs.viprfs.auth.identity_translation property is
set to FIXED_REALM. This is now deprecated.

fs.viprfs.auth.anonymou
s_translation

This property is used to determine how users and groups are assigned to newly created files.
NOTE: This property was used to determine what happened to files that had no owner. These
files were said to be owned by anonymous. Files and directories are no longer anonymously

owned. The values are:

● LOCAL_USER: Use this setting with a Hadoop cluster that uses simple security. Assigns the Unix
user and group of the Hadoop cluster to newly created files and directories.

● CURRENT_USER: Use this setting for a Hadoop cluster that uses Kerberos. Assigns the Kerberos
principal (user@REALM.COM) as the file or directory owner, and uses the group that has been
assigned as the default for the bucket.

● NONE: (Deprecated) Previously indicated that no mapping from the anonymously owned objects
to the current user should be performed.

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>
 <value>CURRENT_USER</value>
 </property>

Kerberos realm and service principal properties

viprfs.security.principal This property specifies the ECS service principal. This property tells the KDC about the ECS
service. This value is specific to your configuration. The principal name can include _HOST which
is automatically replaced by the actual data node FQDN at run time. For example:

<property>
 <name>viprfs.security.principal</name>
 <value>vipr/_HOST@example.com</value>
</property>

Sample core-site.xml for simple authentication mode

The following core-site.xml file is an example of ECS HDFS properties for simple authentication mode.

core-site.xml

<property>
 <name>fs.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

<property>
 <name>fs.AbstractFileSystem.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>

165

</property>

<property>
 <name>fs.vipr.installations</name>
 <value>federation1</value>
</property>

<property>
 <name>fs.vipr.installation.federation1.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
</property>

<property>
 <name>fs.vipr.installation.federation1.resolution</name>
 <value>dynamic</value>
</property>

<property>
 <name>fs.vipr.installation.federation1.resolution.dynamic.time_to_live_ms</name>
 <value>900000</value>
</property>

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://mybucket.mynamespace.federation1/</value>
</property>

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>
 <value>LOCAL_USER</value>
</property>

<property>
 <name>fs.viprfs.auth.identity_translation</name>
 <value>NONE</value>
</property>

166

Topics:

• External key management

External key management
This section provides information about EKM keys, EKM key hierarchy, and storage locations of EKM.

The table lists the supported Key-Trust-Platform (KTP) for different versions of ECS:

Table 53. Supported Key-Trust-Platform (KTP)

Supported KTP ECS 3.5 ECS 3.6 ECS 3.7 ECS 3.8

IBM Secure Key Lifecycle Manager 3.0 Yes Yes Yes Yes

Gemalto (SafeNet) KeySecure Yes Yes Yes Yes

Safenet KeySecure 8.11 with Client Certificate
Authentication only

No Yes Yes Yes

Thales CipherTrust Manager 2.5.2 No No No Yes

NOTE: If you are using KeySecure, see Migrate KeySecure to Thales CipherTrust Manager for better support for ECS 3.8.

External key management uses a hierarchy. In the externally managed scenario, the Master Key is delegated to the External
Key Manager (EKM). Like native key management, Master key is used to derive Virtual Master Key. Each namespace in ECS
associates to a Namespace Key, and a Virtual Master Key protects it. Virtual Master Key is a key that is derived from master key
and RT Data Encryption key, and the Virtual master key is never persisted to disks. All buckets within a namespace associates to
a Bucket Key, and the corresponding namespace key protects the Bucket Key. Data for each object is encrypted using a unique
object key, which is protected using a Virtual Bucket Key. Virtual bucket key is derived from bucket and rotation key and is not
saved to disks.

B

167

Figure 6. External Key Management Key Hierarchy

The master key is generated and stored securely in the External Key Manager (EKM). Namespace key and Rotation key
are wrapped using AESKeyWrapRFC5649 by virtual master key. Bucket key is wrapped using AESKeyWrapRFC5649 by
namespace key. These wrapped keys are stored in the Resource Table (RT) like the natively managed keys. The virtual bucket
key wraps the object keys using AESKeyWrapRFC5649 and stores in Object Table (OB).

The communication with EKMs is protected by SSL using server and client certificates. When ECS persists or retrieves the keys,
only the encrypted data is transported across nodes of a VDC or across VDCs. Decryption of key happens locally at each service
that requires a specific key.

Figure 7. Storage Locations of EKM Managed keys

168

The table provides a brief explanation of the various keys that are used in key management using EKM.

Table 54. ECS EKM-Managed Keys

Key name Key type Protected by Description Storage

Master Key KEK External Key Manager AES 256-bit key that is generated
by EKM used with RT Data
Encryption key to create Virtual
Master key that protects rotation
and namespace keys.

Unique per ECS Federation is
created and stored in EKM. New
Master key is generated every time
a user requests a key rotation.

Rotation Key KEK Virtual Master Key using
AESKeyWrapRFC5649

AES 256-bit key that is generated
by EKM used to create Virtual
Bucket key for wrapping object
keys.

New rotation key that is generated
and stored in ECS every time a
user requests key rotation.

RT Data
Encryption
Key

KEK VDC Public Key Randomly generated AES 256-bit
key used to create Virtual Master
Key.

Unique per ECS Federation is
stored wrapped using each VDC's
Public Key in the Resource Table
(RT). RT is a KV-store across all
VDCs in the federation.

Virtual Master
Key

KEK Does not require
protection, as it is not
stored.

Is computed from the Master and
RT Data Encryption keys when
required.

This key is never persisted to disk.

Namespace
Key

KEK Virtual Master Key using
AESKeyWrapRFC5649

Randomly generated AES 256-
bit key per namespace, used to
wrap all bucket keys belonging to
buckets in the namespace.

Unique to each namespace stored
as wrapped key using Virtual
Master Key in the Resource Table.

Bucket Key KEK Namespace Key using
AESKeyWrapRFC5649

Randomly generated AES 256-bit
key per bucket, used along with
Rotation Key to generate Virtual
Bucket Key, used to wrap all
object keys.

Unique to each bucket stored as
wrapped key using namespace key
in the Resource Table

Virtual Bucket
Key

KEK Does not require
protection, as it is not
stored.

Is computed from the Bucket and
Rotation keys when required.

This key is never persisted to disk.

Object Data
Encryption
Key

DEK Virtual Bucket Key using
AESKeyWrapRFC5649

Randomly generated AES 256-bit
key generated for each object,
used to encrypt object data.

Object Key is wrapped using
Virtual Bucket KEK in the Object
Table (KV-store) in commodity
disks.

User-supplied keys with the S3 API headers (ECS 3.2 and later)

With the S3 API, encryption keys can be specified in the header to encrypt objects. When an object is encrypted using
user-supplied key, the key is never stored, only the hash of the key is stored in Object Table. The user must supply the
encryption key every time an operation is performed on that object. ECS validates that the key provided for update, appends,
and reads it as the same used during object creation.

Retrieving master key after Geo-federation

● A system being added to form or extend a federation generates public/private keys locally. These keys are used for
encryption or decryption of the federation's master key.

● Upon federation, the new system that does not know the master key, stores the public key in Resource Table.
● A VDC that knows the master key uses this public key to encrypt and share the encrypted key with new system.
● The master key is now global and known to both systems within the federation.

From this point on, the master key is global and known to both systems within the federation. The ECS system that is labeled
VDC 2 joins the federation. The master key of VDC 1 (the existing system) is extracted and passed to VDC 2 for encryption with
the public-private key randomly generated by VDC 2.

169

Figure 8. Encryption of the master key in a geo-replicated environment

Migrate KeySecure to Thales CipherTrust Manager

If you are using KeySecure, perform the following steps to migrate to Thales CipherTrust Manager that ECS 3.8 supports.

1. Contact Customer Support to deactivate the existing KeySecure in ECS.
When the existing KeySecure is deactivated ECS moves to Local or Native Key Management.

2. Delete the existing deactivated EKM servers and EKM cluster in ECS.

3. Create EKM cluster and select Thales CipherTrust as a External Key Management Type.

4. Add CTM servers.

NOTE: You must add minimum of two CTM servers.

5. Create VDC EKM Mapping.

6. Activate EKM Cluster.

NOTE: See ECS 3.8 Administration Guide for steps to create and activate new EKM cluster.

170

Topics:

• Document feedback

Document feedback
If you have any feedback or suggestions regarding this document, mailto:ecs.docfeedback@dell.com.

C

171

mailto:ecs.docfeedback@dell.com

Index

B

Bucket Policies 17

C

CloudDVR 71

D

DELETE Object Tagging 18

E

ECS IAM 78, 98
ECS IAM entities 78
ECS IAM limitations 96
EKM Key Hierarchy 167
External Key Management 167

F

File system enabled 34

G

GET Object Tagging 18
GetFederationToken 109
GetFederationToken permissions 109
GetFederationToken request parameters 110

L

Lifecycle Management 17

O

Object Lock 21
Object tag 16
object tagging parameters 18

P

PUT object tagging 18

R

Retrieving master key 167

S

s3bucketoperation 99
Storage Locations of EKM Managed keys 167

T

Tag set 16

Thales CipherTrust Manager 170

	 ECS 3.8.x Data Access Guide
	Contents
	S3
	Revision history
	Amazon S3 API support in ECS
	S3 API supported and unsupported features
	Behavior where bucket already exists

	Bucket policy support
	Creating, Assigning, and Managing Bucket Policies
	Bucket policy scenarios
	Supported bucket policy operations
	Supported bucket policy conditions

	Object Tagging
	Additional information about Object Tagging
	Object Tagging operations
	Manage Object Tagging

	S3 Object Lock
	Managing Object Lock
	Retention mode
	Object Lock and ADO
	Common issues while enabling Object Lock and ADO
	ECS S3 Object Lock condition keys
	ECS S3 Object Lock permissions
	Object Lock API Examples

	Object lifecycle management
	S3 Extensions
	Byte range extensions
	Updating a byte range within an object
	Overwriting part of an object
	Appending data to an object
	Reading multiple byte ranges within an object

	Retention
	Extending retention period on objects

	File system enabled
	S3A support
	Geo-replication status
	Configuring throttle limit during bucket creation
	S3 Select
	Limitations
	S3 Select API

	Metadata Search
	Assign metadata index values to a bucket
	Setting index values using the Portal
	Setting index values using the ECS Management REST API
	Setting values using the S3 API

	Using encryption with metadata search
	Assign metadata to objects using the S3 protocol
	Use metadata search queries
	Datetime queries
	Using markers and max-keys to paginate results
	Using Partial Results
	Using special characters in queries
	Prefix capability in metadata search
	Metadata search example

	Using Metadata Search from the ECS Java SDK
	ECS system metadata and optional attributes
	Metadata search with Tokenization
	Limitations

	S3 and Swift Interoperability
	Create and manage secret keys
	Create a key for an object user
	Generate a secret key from the ECS Portal
	Create an S3 secret key using the ECS Management REST API

	Create an S3 secret key: self-service
	Working with self-service keys

	Authenticating with the S3 service
	Authenticating using Signature V2
	Authenticating using Signature V4

	Using s3curl with ECS
	Use SDKs to access the S3 service
	Using the Java Amazon SDK
	ECS S3 APIs compatible with AWS Java SDK
	AWS SDK APIs not supported in ECS S3 APIs

	ECS Java SDK
	Disabling request timeouts
	Changing timeout parameters

	ECS S3 error codes
	Hadoop S3A for ECS
	Enabling data2 IP in ECS S3

	Cloud DVR
	Cloud DVR overview
	Cloud DVR supported APIs
	Cloud DVR API Examples

	ECS IAM for S3
	ECS IAM overview
	ECS IAM identities
	Tagging ECS IAM users and roles

	Backward compatibility
	ECS legacy users
	Access control

	ECS IAM API and SDK access
	AWS SDK APIs not supported in ECS IAM
	ECS IAM error codes
	ECS IAM supported condition keys
	ECS IAM limitations on entities and objects
	ECS IAM access management
	ECS IAM Policies
	ACLs
	S3 Request authorization
	S3 bucket operation authorization
	S3 object operation authorization

	ECS IAM and STS resources requests

	Secure Token Service
	Accessing accounts using AssumeRole
	Same account access with AssumeRole
	Cross account access with AssumeRole

	ECS IAM SAML support
	SAML-compliant provider setup
	AssumeRoleWithSAML
	Attributes in SAML assertion
	User-specific access using SAML keys
	GetFederationToken
	GetFederationToken permissions

	GetFederationToken request parameters

	OpenStack Swift
	OpenStack Swift support in ECS
	OpenStack Swift supported operations
	Swift extensions
	Swift byte range extensions
	Updating a byte range within an object
	Overwriting part of an object
	Appending data to an object
	Reading multiple byte ranges within an object

	Retention
	File system enabled
	S3 and Swift interoperability
	OpenStack Swift authentication
	Create Swift users in the ECS Portal
	OpenStack Version 1 authentication
	OpenStack Version 2 authentication
	Authentication using ECS Keystone V3 integration
	Configure OpenStack Swift and ECS integration
	Add a Keystone authentication provider
	Keystone authentication provider settings

	Authorization on Container
	ECS Swift error codes

	EMC Atmos
	EMC Atmos API support in ECS
	Supported EMC Atmos REST API Calls
	Unsupported EMC Atmos REST API Calls
	Subtenant Support in EMC Atmos REST API Calls
	API Extensions
	Appending data to an object
	ECS support for retention and retention expiration periods for Atmos objects

	ECS Atmos error codes

	CAS
	Setting up CAS support in ECS
	Cold Storage
	Compliance
	Platform hardening and Compliance
	Compliance and retention policy
	Compliance agent

	CAS retention in ECS
	Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor
	Set up namespace retention policies
	Create and set up a bucket for a CAS user
	Set up a CAS object user
	Set up bucket ACLs for CAS
	ECS Management APIs that support CAS users
	Content Addressable Storage (CAS) SDK API support
	CAS connection string

	ECS CAS error codes
	Enabling data2 IP in CAS

	ECS Management REST API
	ECS Management REST API introduction
	Authenticate with the ECS Management REST API
	Authenticate without cookies
	Authenticate with cookies

	Logout
	ECS Management REST API whoami command
	ECS Management REST API summary

	Hadoop core-site xml properties
	Hadoop core-site.xml properties for ECS HDFS
	Sample core-site.xml for simple authentication mode

	External Key Management
	External key management
	Migrate KeySecure to Thales CipherTrust Manager

	Document feedback
	ecs_c_customer_feedback_external

	Index

